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1. VECTOR SPACES 

1.1. VECTORS IN 3D: EQUATIONS OF LINES AND PLANES 

 

A. DOT PRODUCT: 

 

 

B. CROSS PRODUCT: 

 

 

C. 3-D EQUATIONS FOR LINES AND PLANES 

  Line Plane 

Parametric 𝐫𝐫 = 𝐫𝐫0 + 𝜆𝜆𝐯𝐯 𝐫𝐫 = 𝐫𝐫0 + 𝜆𝜆𝐮𝐮 + 𝜇𝜇𝐯𝐯 

Using given 
points a, b, c 

𝐫𝐫 = 𝐚𝐚 + 𝜆𝜆(𝐛𝐛 − 𝐚𝐚) 𝐫𝐫 = 𝐚𝐚 + 𝜆𝜆(𝐛𝐛 − 𝐚𝐚) + 𝜇𝜇(𝐜𝐜 − 𝐚𝐚) 

  𝐫𝐫 = 𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛, 
with 𝛼𝛼 + 𝛽𝛽 = 1 

𝐫𝐫 = 𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛+ 𝛾𝛾𝐜𝐜, 
with 𝛼𝛼 + 𝛽𝛽 + γ = 1 

Using products (𝐫𝐫 −  𝐫𝐫0) × 𝐯𝐯 =  0 (𝐫𝐫 −  𝐫𝐫0) ⋅ 𝐧𝐧 =  0 

Component equations 
(3D) 

𝑥𝑥 − 𝑥𝑥0
𝑣𝑣𝑥𝑥

=
𝑦𝑦 −  𝑦𝑦0
𝑣𝑣𝑦𝑦

=
𝑧𝑧 −  𝑧𝑧0
𝑣𝑣𝑧𝑧

 𝑛𝑛𝑥𝑥𝑥𝑥 + 𝑛𝑛𝑦𝑦𝑦𝑦 + 𝑛𝑛𝑧𝑧𝑧𝑧 = 𝑑𝑑 

 

D. EQUATION OF SPHERE 

 

  

𝐚𝐚 ⋅ 𝐛𝐛 = ‖𝐚𝐚‖‖𝐛𝐛‖ cos 𝜃𝜃 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑥𝑥 + 𝑎𝑎𝑦𝑦𝑏𝑏𝑦𝑦 + 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧 

Projection of 𝐯𝐯 in direction 𝐮𝐮 is given by 𝑣𝑣𝑢𝑢𝐮𝐮� with 𝑣𝑣𝑢𝑢 = 𝐯𝐯 ⋅ 𝐮𝐮� where 𝐮𝐮� = 𝐮𝐮/‖𝐮𝐮‖:    

Length or norm of a vector:  𝐯𝐯 ⋅ 𝐯𝐯 = ‖𝐯𝐯‖2 

 

𝐚𝐚 × 𝐛𝐛 = ‖𝐚𝐚‖‖𝐛𝐛‖ sin 𝜃𝜃���������
Area of parallelogram

 𝐮𝐮�     

𝐮𝐮� is perpendicular to 𝐚𝐚 and 𝐛𝐛, given by right hand rule 

𝐚𝐚 × 𝐛𝐛 = �
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧
𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦 𝑏𝑏𝑧𝑧

� = 𝐱𝐱��𝑎𝑎𝑦𝑦𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑦𝑦� − 𝐲𝐲�(𝑎𝑎𝑥𝑥𝑏𝑏𝑧𝑧 − 𝑎𝑎𝑧𝑧𝑏𝑏𝑥𝑥) + 𝐳𝐳��𝑎𝑎𝑦𝑦𝑏𝑏𝑦𝑦 − 𝑎𝑎𝑦𝑦𝑏𝑏𝑥𝑥� 

 

Sphere radius a, center c:       �𝐫𝐫sphere − 𝐜𝐜� = 𝑎𝑎 
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E. 3-D DISTANCES BETWEEN POINTS, LINES AND PLANES 

 

Point (𝐩𝐩) to Line (𝐫𝐫0 + 𝜆𝜆𝐯𝐯�) (𝐩𝐩 − 𝐫𝐫line) × 𝐯𝐯� 
Point (𝐩𝐩) to Plane (𝐫𝐫 − 𝐫𝐫0) ⋅ 𝐧𝐧� = 0 �𝐩𝐩 − 𝐫𝐫plane� ⋅ 𝐧𝐧� 

Line (𝐫𝐫1 + 𝜆𝜆𝐯𝐯1) to Line (𝐫𝐫2 + 𝜆𝜆𝐯𝐯2) (𝐫𝐫line1 − 𝐫𝐫line2) ⋅ 𝐧𝐧�        with      𝐧𝐧� = 𝐯𝐯1×𝐯𝐯2
‖𝐯𝐯1×𝐯𝐯2‖

 

Line (𝐫𝐫1 + 𝜆𝜆𝐯𝐯) to Plane (𝐫𝐫 − 𝐫𝐫2) ⋅ 𝐧𝐧� = 0 �𝐫𝐫line − 𝐫𝐫plane� ⋅ 𝐧𝐧�     as long as    𝐯𝐯 ⋅ 𝐧𝐧� = 0 
 

F. PROPERTIES OF DOT AND CROSS PRODUCTS 

Dot and cross products are linear operations: 

(𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛) ⋅ 𝐯𝐯 = 𝛼𝛼(𝐚𝐚 ⋅ 𝐯𝐯) + 𝛽𝛽(𝐛𝐛 ⋅ 𝐯𝐯) 

(𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛) × 𝐯𝐯 = 𝛼𝛼(𝐚𝐚 × 𝐯𝐯) + 𝛽𝛽(𝐛𝐛 × 𝐯𝐯) 

Dot product is symmetric: 

𝐚𝐚 ⋅ 𝐛𝐛 = 𝐛𝐛 ⋅ 𝐚𝐚 

Cross product is antisymmetric: 

𝐚𝐚 × 𝐛𝐛 = −𝐛𝐛× 𝐚𝐚 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

1.1 (3) 

PROBLEMS: 

DOT AND CROSS PRODUCT 

1) Show that if 𝐚𝐚 = 𝐛𝐛 + 𝜆𝜆𝐜𝐜, then 𝐚𝐚 × 𝐜𝐜 = 𝐛𝐛 × 𝐜𝐜 

Sol: 
From the distributive property under addition: 
  

𝐚𝐚 × 𝐜𝐜 = (𝐛𝐛 + 𝜆𝜆𝐜𝐜) × 𝐜𝐜 = (𝐛𝐛 × 𝐜𝐜) + (𝜆𝜆𝐜𝐜 × 𝐜𝐜) 
  
And since (𝐜𝐜 × 𝐜𝐜) = 0, we arrive at the proof. 

 
  
  

EQUATIONS OF LINES AND PLANES 
  

2) Consider a line joining points 𝐚𝐚 = (2,2,0) and 𝐛𝐛 = (3,1,1). Write down the line in parametric 
form, using a cross product, and in component form. 

Solution: 

𝐫𝐫0  =  (2,2,0) 

𝐯𝐯 =  𝐛𝐛 − 𝐚𝐚 =  (3,1,1) − (2,2,0) = (1,−1,1) 

Parametric form: 𝐫𝐫 =  (2,2,0) + 𝜆𝜆 (1,−1,1) 

Using a cross product: (𝐫𝐫 – 𝐫𝐫0) × 𝐯𝐯 =  0 

Component form:  

𝑥𝑥 − 2
1

=
𝑦𝑦 − 2
−1

= 𝑧𝑧 

 

 

3) Consider a line joining points 𝐚𝐚 = (1,2,0) and 𝐛𝐛 = (3,1,0). Write down the line in parametric 
form, using a cross product, and in component form. 

Solution: 

𝐫𝐫0 = (1,2,0) 

𝐯𝐯 = 𝐛𝐛 − 𝐚𝐚 = (2,−1,0) 

Parametric form: 𝐫𝐫 = (1,2,0) + 𝜆𝜆(2,−1,0) 

Using a cross product: (𝐫𝐫– 𝐫𝐫𝟎𝟎) × 𝐯𝐯 = 0  (𝐫𝐫– (1,2,0)) × (2,−1,0) = 0 

Component form: (𝑥𝑥 − 1)/2 =  (𝑦𝑦 − 2)/−1 =  (𝑧𝑧 − 0)/0. It cannot be written in component 
form, because the line is parallel to one of the coordinate planes! 
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DISTANCES 

4) Find the distance between the lines 

𝑥𝑥 − 2
2

=
𝑦𝑦 − 4

1
=
𝑧𝑧 − 3

2
 

and 

𝑥𝑥 − 1 = 2 − 𝑦𝑦 = −𝑧𝑧 

Sol: A line crossing a point 𝐫𝐫0 = (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) with a direction 𝐯𝐯 = (𝑣𝑣𝑥𝑥, 𝑣𝑣𝑦𝑦,𝑣𝑣𝑧𝑧) can be written in 
component equation as: 

𝑥𝑥 − 𝑥𝑥0
𝑣𝑣𝑥𝑥

=
𝑦𝑦 − 𝑦𝑦0
𝑣𝑣𝑦𝑦

=
𝑧𝑧 − 𝑧𝑧0
𝑣𝑣𝑧𝑧

 

The first line includes a point 𝐫𝐫1 = �
2
4
3
� and has direction  𝐯𝐯1 = �

2
1
2
� 

The second line needs some re-ordering of terms to match the known form 𝑥𝑥−1
1

= 𝑦𝑦−2
−1

= 𝑧𝑧−0
−1

 and 

includes a point 𝐫𝐫2 = �
1
2
0
� and has direction  𝐯𝐯2 = �

1
−1
−1

�. 

Given a point and a direction for each line, their distance is given by: 

(𝐫𝐫2 − 𝐫𝐫1) ⋅ 𝐧𝐧�        with      𝐧𝐧� = 𝐯𝐯1×𝐯𝐯2
‖𝐯𝐯1×𝐯𝐯2‖

 

𝐧𝐧 = 𝐯𝐯1 × 𝐯𝐯2 = (1,4,−3)𝑇𝑇 

𝐧𝐧� = 𝐧𝐧/‖𝐧𝐧‖ = �
1
√26

� (1,4,−3)𝑇𝑇 

is a unit vector joining the two lines at their closest approach. 

A vector connecting the two lines is (𝐫𝐫2 − 𝐫𝐫1) = (−1,−2,−3)𝑇𝑇 and the distance between the two 

lines is given by the magnitude of the dot product |(𝐫𝐫2 − 𝐫𝐫1) ⋅ 𝐧𝐧�| = ��
−1
−2
−3

� ⋅ 1
√26

�
1
4
−3

�� = 0. The two 

lines intersect! 

 
5) Calculate the minimum distance between the line 𝑦𝑦 =  2𝑥𝑥 +  3 and the origin. 

Solution: 

It is not 3! Distance between point and line is: 𝑑𝑑 = ‖(𝐩𝐩 − 𝐫𝐫line) × 𝐯𝐯�‖.  

To use this equation we need the line in parametric form 𝐫𝐫 = 𝐫𝐫line + 𝜆𝜆𝐯𝐯 

𝐫𝐫line is any point in the line, e.g., (0,3) 

𝐯𝐯 is a vector in the direction of the line, we can find it as a vector joining any two points in the line, 
or directly by considering the meaning of the slope = 2, so that 𝐯𝐯 = (1,2), which we then normalize 
into a unit vector: 
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𝐯𝐯� =
𝐯𝐯
‖𝐯𝐯‖

=
(1,2)

√12 + 22
=

(1,2)
√5

 

Therefore, the distance between the origin and the line is, with 𝐫𝐫line being ANY point in the line: 

𝑑𝑑 = ‖(𝐩𝐩 − 𝐫𝐫line) × 𝐯𝐯�‖ 

= ��(0,0) − (0,3)� ×
1
√5

(1,2)� 

Cross products cannot be performed in 2D space!! But we can pretend that our working x-y plane is 
in 3D space at the plane z=0, for example, and all the distances remain the same 

= ��(0,0,0)− (0,3,0)�×
1
√5

(1,2,0)� 

=
1
√5

‖(0,−3,0) × (1,2,0)‖ =
3
√5

 

 
6) Give the coordinates of the point at which the line 𝐫𝐫 = (1,3) + 𝜆𝜆(1,1) is closest to the point 

(1,1). 

Sol: This is not only asking for the minimum distance, which is easily calculated with a known 
equation:  

𝑑𝑑min  = ‖(𝐩𝐩 − 𝐫𝐫line) × 𝐯𝐯�‖ = �((1,1) − (1,3)) ×
(1,1)
√1 + 1

� =
1
√2

‖(0,2) × (1,1)‖ = √2 

But we are also being asked the point at which the distance is minimal! 

To solve this, we need to think a bit. We can find the distance from ANY point in the line as a 
function of the parameter 𝜆𝜆 and then equate it to the known minimum distance to solve for 𝜆𝜆: 

 

 

 

𝑑𝑑(𝜆𝜆) = ‖𝐩𝐩 − 𝐫𝐫line(𝜆𝜆)‖ = 𝑑𝑑min  

Solve quadratic equation for 𝜆𝜆min. 
Quadratic equation must have only one 

(double) root: (𝜆𝜆min = −𝑏𝑏/2𝑎𝑎) 
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Therefore, we do: 

𝑑𝑑(𝜆𝜆) = ‖𝐫𝐫line(𝜆𝜆)− 𝐩𝐩‖ = 𝑑𝑑min 
‖(1,3) + 𝜆𝜆(1,1) − (1,1)‖ = 𝑑𝑑min 

‖(0,2) + 𝜆𝜆(1,1)‖ = 𝑑𝑑min 

�� 𝜆𝜆
2 + 𝜆𝜆�� = 𝑑𝑑min 

�𝜆𝜆2 + (2 + 𝜆𝜆)2 = 𝑑𝑑min 
�𝜆𝜆2 + 4 + 4𝜆𝜆 + 𝜆𝜆2 = 𝑑𝑑min 

�2𝜆𝜆2 + 4𝜆𝜆 + 4 = 𝑑𝑑min 

Squaring both sides: 

2𝜆𝜆2 + 4𝜆𝜆 + 4 = 𝑑𝑑min2  

Substituting 𝑑𝑑min = ‖(𝐫𝐫line − 𝐩𝐩) × 𝐯𝐯�‖ = √2 

2𝜆𝜆2 + 4𝜆𝜆 + 2 = 0 

We can solve this quadratic equation, and it should have only one solution! Since we know it should 
have only one solution, we know that the discriminant (the √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎 part) must be zero, so the 

quadratic formula equation is really easy 𝜆𝜆min = −𝑏𝑏±√𝑏𝑏2−4𝑎𝑎𝑎𝑎
2𝑎𝑎

= −𝑏𝑏
2𝑎𝑎

= −4
4

= −1. In fact, we don’t 

need to find 𝑑𝑑min2  at all, because the solution −𝑏𝑏
2𝑎𝑎

 is not affected by adding or subtracting  𝑑𝑑min2 . 

Finally, the point 𝜆𝜆 = −1 corresponds to 𝐫𝐫line(𝜆𝜆 = −1) = (1,3) − 1(1,1) = (0,2). 

Notice that vector formulas (the calculation of 𝑑𝑑min) has “saved” us from having to find derivatives 
to find the local minimum (which would be an alternative way of doing it). 
 

 

7) Calculate the point at which the line 𝑦𝑦 =  2𝑥𝑥 +  3 is closest to the origin. 

Tip: In a previous problem we found 𝑦𝑦 =  2𝑥𝑥 +  3  →   𝐫𝐫(𝜆𝜆) = (0,3) + 𝜆𝜆(1,2) 

Solution: Therefore, we can follow the procedure for finding the value of 𝜆𝜆 which achieves that 
distance as above: 

𝑑𝑑(𝜆𝜆) = ‖𝐫𝐫line(𝜆𝜆)− 𝐩𝐩‖ = 𝑑𝑑min 
‖(0,3) + 𝜆𝜆(1,2) − (0,0)‖ = 𝑑𝑑min 

�� 𝜆𝜆
3 + 2𝜆𝜆�� = 𝑑𝑑min 

�𝜆𝜆2 + (3 + 2𝜆𝜆)2 = 𝑑𝑑min 
�𝜆𝜆2 + 9 + 12𝜆𝜆 + 4𝜆𝜆2 = 𝑑𝑑min 

�5𝜆𝜆2 + 12𝜆𝜆 + 9 = 𝑑𝑑min 
5𝜆𝜆2 + 12𝜆𝜆 + 9 = 𝑑𝑑min2  

We can solve this quadratic equation for 𝜆𝜆min. Since we know that 𝑑𝑑min occurs exactly at the 
minimum, the solution is given by: 

𝜆𝜆min =
−𝑏𝑏
2𝑎𝑎

=
−12
10

= −
6
5
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So that the point of minimum distance is: 

𝐫𝐫 �𝜆𝜆 = −
6
5
� = (0,3) −

6
5

(1,2) = �−
6
5

,
3
5
� 

Double check your answer, check that the distance from that point to the origin is indeed 3
√5

. 

 

8) Consider the line segment 𝐫𝐫 = 𝐫𝐫0 + 𝜆𝜆𝐯𝐯 with 𝜆𝜆 in the interval [0,2] (i.e. it is not an infinite line, 
only a segment of it). Come up with an algorithm to find the minimum distance between this 
line segment and a point 𝐩𝐩, without requiring differentiation. 

First find the distance between the infinite line 𝐫𝐫 = 𝐫𝐫𝟎𝟎 + 𝜆𝜆𝐯𝐯 and the point 𝐩𝐩, lets call it 𝑑𝑑min  =
�(𝐩𝐩 − 𝐫𝐫𝟎𝟎) × � 𝐯𝐯

‖𝐯𝐯‖
��  

Find the value of lambda for which this minimum distance takes place, by solving the equation: 

‖𝐫𝐫line(𝜆𝜆) − 𝐩𝐩‖ = 𝑑𝑑min 

‖𝐫𝐫0 + 𝜆𝜆𝐯𝐯 − 𝐩𝐩‖ = 𝑑𝑑min 

This will give rise to a quadratic equation in 𝜆𝜆, with only ONE (double) solution 𝜆𝜆min. If the value of 
𝜆𝜆min is outside the range of the line segment [0,2], then the end of the line segment closest in 𝜆𝜆 to 
the solution 𝜆𝜆min will be the point with smallest distance from the line segment to 𝐩𝐩. If the value is 
inside the range, then the minimum distance will be 𝑑𝑑min. 
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9) Find the distance from the point P with coordinates (1,2,3) to the plane that contains the 
points A, B, C having coordinates (0,1,0), (2,3,1) and (5,7,2) 

Sol: 
Distance from a point P to a plane 𝜋𝜋 is given by: �𝐩𝐩 − 𝐫𝐫plane� ⋅ 𝐧𝐧�. Where 𝐫𝐫plane is any point in the 
plane: e.g. A, B or C, let's take 𝐫𝐫plane = 𝐚𝐚 
And we also need the normal to the plane 𝐧𝐧�. 
  
The normal to the plane can be calculated via the cross product of any two vectors in the plane 
  

𝐧𝐧 = (𝐛𝐛 − 𝐚𝐚) × (𝐜𝐜 − 𝐚𝐚) 
= (2 − 0,3 − 1,1 − 0) × (5 − 0,7− 1,2 − 0) 

= (2,2,1) × (5,6,2) 

= �
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
2 2 1
5 6 2

� =  𝐱𝐱�(4 − 6) − 𝐲𝐲�(4 − 5) +  𝐳𝐳�(12 − 10) = �
−2
1
2
�   

  
Remember we need the normalized unit vector 𝐧𝐧�.  
  

𝐧𝐧� =
𝐧𝐧
‖𝐧𝐧‖

=
(−2,1,2)

�(−2)2 + (1)2 + (2)2
=

1
3
�
−2
1
2
� 

  
So, we can finally calculate the distance: 
  
𝑑𝑑 = |�𝐩𝐩 − 𝐫𝐫plane� ⋅ 𝐧𝐧�| 

= ���
1
2
3
� − �

0
1
0
�� ⋅

1
3
�
−2
1
2
�� 

=
1
3 �
�

1
1
3
� ⋅ �

−2
1
2
�� =

1
3

(−2 + 1 + 6) =
5
3
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INTERSECTIONS 

10) Find the direction of the line of intersection of the two planes 
 𝑥𝑥 + 3𝑦𝑦 − 𝑧𝑧 = 5 and 2𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧 = 3.  

Sol: 
𝐯𝐯 = 𝐧𝐧1 × 𝐧𝐧2 
  
= (1,3,−1) × (2,−2,4) 
  

= �
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
1 3 −1
2 −2 4

� =  𝐱𝐱��3 ⋅ 4 − (−1) ⋅ (−2)� − 𝐲𝐲�(1 ⋅ 4 − (−1) ⋅ 2) +  𝐳𝐳�(1 ⋅ (−2) − 3 ⋅ 2) 

 

= �
10
−6
−8

�    

  
 

11) Find the equation in parametric form for the line of intersection of the two planes 

 𝑥𝑥 + 3𝑦𝑦 − 𝑧𝑧 = 5 and 2𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧 = 3.  
 

Solution: The planes are the same as in the previous problem, the vector parallel to the line is 𝐯𝐯 =
𝐧𝐧1 × 𝐧𝐧2 = (1,3,−1) × (2,−2,4) = (10,−6,−8). For the parametric equation 𝐫𝐫(𝜆𝜆) = 𝐫𝐫0 + 𝜆𝜆𝐯𝐯 we 
need to find any point of the line 𝐫𝐫0. 

To find a point of the line, we must find a point that exists simultaneously in both planes 𝑥𝑥 + 3𝑦𝑦 −
𝑧𝑧 = 5 and 2𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧 = 3, in other words, we need to solve the two equations simultaneously 
and find any solution. There are lots of ways to do this. Let’s subtract two times the first equation to 
the second equation: 

(2𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧) − 2(𝑥𝑥 + 3𝑦𝑦 − 𝑧𝑧) = 3 − 2(5) 
−8𝑦𝑦 + 6𝑧𝑧 = −7 

This is, in fact, one of the two equations which would define the line of intersection. We don’t need 
to find the other, as we only need any point. For example, we can set 𝑦𝑦0 = 0 and find 𝑧𝑧0 = −7

6
. Now 

we can find a value for 𝑥𝑥0 from the two equations of the planes. We can use 2𝑥𝑥 − 2𝑦𝑦 + 4𝑧𝑧 = 3, 
substituting 𝑦𝑦0 and 𝑧𝑧0 we find 2𝑥𝑥0 −

7
6

4 = 3 →   𝑥𝑥0 = 3
2

+ 28
12

= 9
6

+ 14
6

= 23
6

. We can check that the 
point 𝐫𝐫0 = (𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) also fulfils the equation for the second plane. Therefore, we have found a 
point on the line, and we have all the required information: 

𝐫𝐫(𝜆𝜆) = 𝐫𝐫0 + 𝜆𝜆𝐯𝐯 

= �
23/6

0
−7/6

�+ 𝜆𝜆 �
10
−6
−8

� 
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12) Find the parametric equation of the line of intersection of the two planes given by 𝑥𝑥 − 5 = 0 
and 𝑦𝑦 = 𝑧𝑧. 

Sol: 
Do not be confused by the notation, 
 
𝑥𝑥 − 5 = 0 is the plane 𝑥𝑥 + 0𝑦𝑦 + 0𝑧𝑧 = 5 
𝑦𝑦 = 𝑧𝑧 is the plane 0𝑥𝑥 + 𝑦𝑦 − 𝑧𝑧 = 0. 
  
𝐯𝐯 = 𝐧𝐧1 × 𝐧𝐧2 
 
= (1,0,0) × (0,1,−1) 
 

= �
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
1 0 0
0 1 −1

� =  𝐱𝐱�(0) − 𝐲𝐲�(1 ⋅ 1 − 0) +  𝐳𝐳��(−1) − 0� = �
0
−1
−1

�    

 
Now find any point 𝑟𝑟0 simultaneous solution to the two planes: ANY point will do. For example, 𝑥𝑥 =
5, 𝑦𝑦 = 0, 𝑧𝑧 = 0. So, the equation of the line is (notice I used −𝐯𝐯 because it looked simpler and is 
equally valid as a vector parallel to the line) 
 

𝐫𝐫(𝜆𝜆) = �
5
0
0
� + 𝜆𝜆 �

0
1
1
� 

 
 

 
(INCLUDING SPHERES MAKES EQUATIONS BECOME QUADRATIC) 
 

13) Consider the line 𝐫𝐫 = (2,2) + 𝜆𝜆(2,1). This line intersects a circle with radius 𝑟𝑟 = √2 and 
center 𝐜𝐜 = (−1,0) at two points 𝐚𝐚 and 𝐛𝐛. Find their coordinates. 

Sol: 
 
Equation for the line: 𝐫𝐫 = 𝐫𝐫𝟎𝟎 + 𝜆𝜆𝐯𝐯 
Equation for the circle:‖𝐫𝐫 − 𝐜𝐜‖ = 𝑟𝑟 
 
Substituting one into the other we can solve for the values of 𝜆𝜆 that fulfil both conditions 
simultaneously: 
‖𝐫𝐫𝟎𝟎 + 𝜆𝜆𝐯𝐯 − 𝐜𝐜‖ = 𝑟𝑟 
‖(2,2) + 𝜆𝜆(2,1) − (−1,0)‖ = √2 
‖(3 + 2𝜆𝜆, 2 + 𝜆𝜆)‖ = √2 
Evaluating the norm and squaring both sides: 
(3 + 2𝜆𝜆)2 + (2 + 𝜆𝜆)2 = 2 
(9 + 12𝜆𝜆 + 4𝜆𝜆2) + (4 + 4𝜆𝜆 + 𝜆𝜆2) = 2 
5𝜆𝜆2 + 16𝜆𝜆 + 11 = 0 

𝜆𝜆 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑎𝑎

2𝑎𝑎
=
−16 ± √256 − 220

10
=
−16 ± 6

10
= {−1,−11/5} 

 
Therefore, the two points of intersection are found by substituting 𝜆𝜆 into 𝐫𝐫 = 𝐫𝐫𝟎𝟎 + 𝜆𝜆𝐯𝐯: 
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𝐚𝐚 = 𝐫𝐫𝟎𝟎 + (−1)𝐯𝐯 = (2,2) − (2,1) = (0,1) 

𝐛𝐛 = 𝐫𝐫𝟎𝟎 + (−11/5)𝐯𝐯 = (2,2) − (11/5)(2,1) = �−
12
5

,−
1
5
� 

 

14) Find the minimum distance between a point with position vector 𝐩𝐩, and the surface of a 
sphere with radius 𝑎𝑎 and centre at position vector 𝐜𝐜. 

Sol: 
 
First find the distance  ‖𝐩𝐩 − 𝐜𝐜‖ 
 
If ‖𝐩𝐩 − 𝐜𝐜‖ > 𝑎𝑎, then the required distance is decreased by an amount a, so that 𝑑𝑑 = ‖𝐩𝐩 − 𝐜𝐜‖ − 𝑎𝑎. 

 
But what if ‖𝐩𝐩 − 𝐜𝐜‖ < 𝑎𝑎? Then we overshoot the “subtraction” as we get a negative number, but 
this negative number is still the distance! We just need to take the absolute value: 
 
So, finally: 𝑑𝑑 = |‖𝐩𝐩 − 𝐜𝐜‖ − 𝑎𝑎|  
 

 

 
 

 

 

  

Distance from �𝐫𝐫sphere − 𝐜𝐜� = 𝑎𝑎 to point 𝐩𝐩:     𝑑𝑑min =  |‖𝐩𝐩 − 𝐜𝐜‖ − 𝑎𝑎| 
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15) Find the radius 𝜌𝜌 of the circle that is the intersection of the plane 𝐧𝐧� ⋅ 𝐫𝐫 = 𝑝𝑝 and the sphere of 
radius 𝑎𝑎 centred on the point with position vector 𝐜𝐜. The answer must be given in terms of the 
known parameters only (𝐧𝐧�,  𝑝𝑝, 𝑎𝑎 and c) 

Sol: 
 

 
 
 
Let's define 𝐛𝐛 as the centre of the desired circle of intersection 
The equation of the desired circle is |𝐫𝐫 − 𝐛𝐛| = 𝜌𝜌, with 𝐫𝐫 constrained to the plane 𝐧𝐧� ⋅ 𝐫𝐫 = 𝑝𝑝. 
 
We can visualize that: 
  
𝐛𝐛 − 𝐜𝐜 must be parallel to 𝐧𝐧� 
therefore 𝐛𝐛 − 𝐜𝐜 = 𝜆𝜆𝐧𝐧� 
  
If you have trouble visualizing why this is, think of the cone formed with tip at 𝐜𝐜 and base equal to 
the intersection circle. The base of that cone is within the plane, with normal 𝐧𝐧�. Clearly the center of 
the plane surface of the cone will be the center of the circle, point 𝐛𝐛, and from this point, the tip of 
the cone can be reached by moving perpendicularly to the base. 
  
From Pythagoras' theorem we have: 
‖𝐛𝐛 − 𝐜𝐜‖2 + 𝜌𝜌2 = 𝑎𝑎2 
  
So 𝜌𝜌2 = 𝑎𝑎2 − ‖𝐛𝐛 − 𝐜𝐜‖2 
  
 𝜌𝜌 = �𝑎𝑎2 − ‖𝐛𝐛 − 𝐜𝐜‖2 
  
Now we just need to find the length of the vector 𝐛𝐛 − 𝐜𝐜. Since vector 𝐛𝐛 − 𝐜𝐜 is perpendicular to the 
plane, its length corresponds to the distance between point 𝐜𝐜 and the plane 𝐧𝐧� ⋅ 𝐫𝐫 = 𝑝𝑝.  
  
‖𝐛𝐛 − 𝐜𝐜‖ =  distance between point 𝐜𝐜 and the plane 𝐧𝐧� ⋅ 𝐫𝐫 = 𝑝𝑝 
  
The distance between a point and a plane is �𝐜𝐜 − 𝐫𝐫plane� ⋅ 𝐧𝐧� 
We need any point in the plane: 
  
The equation of the plane is 𝐫𝐫 ⋅ 𝐧𝐧� = 𝑝𝑝 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

1.1 (13) 

So any possible point in the plane 𝐫𝐫plane is any point which fulfills 𝐫𝐫plane ⋅ 𝐧𝐧� = 𝑝𝑝, for example we can 
take 𝐫𝐫plane = 𝑝𝑝𝐧𝐧� 
  
Therefore, the required distance is ‖𝐛𝐛 − 𝐜𝐜‖ = |(𝐜𝐜 − 𝑝𝑝𝐧𝐧�) ⋅ 𝐧𝐧�| = |𝐜𝐜 ⋅ 𝐧𝐧� − 𝑝𝑝| 
  
So finally we have: 
  

𝜌𝜌 = �𝑎𝑎2 − |𝐜𝐜 ⋅ 𝐧𝐧� − 𝑝𝑝|2 
  
There are several conditions for this to be a real number (meaning that the sphere does intersect 
with the plane) 
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1.2 N-DIMENSIONAL VECTOR SPACES 

 

A. BASIS, SPAN, LINEAR DEPENDENCE AND INDEPENDENCE 

 

 

B. N-DIMENSIONAL VECTOR SPACES 

A vector space 𝒱𝒱 is not necessarily used to represent geometrical vectors. It can represent any set 
whose elements behave like vectors, that is, fulfils the following axioms: 

- Vector addition:  
o Closure:   𝐮𝐮 + 𝐯𝐯 is in 𝒱𝒱 
o Commutative:  𝐮𝐮 + 𝐯𝐯 = 𝐯𝐯 + 𝐮𝐮 
o Associative:  (𝐮𝐮 + 𝐯𝐯) + 𝐰𝐰 = 𝐮𝐮 + (𝐯𝐯 + 𝐰𝐰) 
o Additive identity:  Vector 𝟎𝟎 ∈ 𝒱𝒱 exists such that 𝐮𝐮 + 𝟎𝟎 = 𝐮𝐮 
o Additive inverse:  Vector (−𝐮𝐮) ∈  𝒱𝒱 exists such that 𝐮𝐮 + (−𝐮𝐮) = 𝟎𝟎 for every 𝐮𝐮 

 
- Multiplication by a scalar: 

o Closure:     𝜆𝜆𝐮𝐮 is in 𝒱𝒱 
o Distributive over vector addition:  𝜆𝜆(𝐮𝐮 + 𝐯𝐯) = 𝜆𝜆𝐮𝐮 + 𝜆𝜆𝐯𝐯 
o Distributive over scalar addition:  (𝜆𝜆 + 𝜇𝜇)𝐮𝐮 = 𝜆𝜆𝐮𝐮+ 𝜇𝜇𝐮𝐮 
o Associative:    (𝜆𝜆𝜇𝜇)𝐯𝐯 = 𝜆𝜆(𝜇𝜇𝐯𝐯) 
o Scalar identity:    Scalar 1 exists such that 1𝐯𝐯 = 𝐯𝐯 

 

Examples: RGB colour space, polynomials of degree 𝑛𝑛, functions 𝑓𝑓(𝑥𝑥) on an interval [𝑎𝑎, 𝑏𝑏]… 

  

Span: 

span{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁} ≡ Space of all vectors reached by linear combinations 𝐯𝐯 = ∑ 𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖𝑖𝑖  

Linear dependence/independence: 

{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁} are linearly independent ⟺  ∑ 𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖𝑖𝑖 ≠ 0 always except for trivial case 𝑎𝑎𝑖𝑖 = 0. 
{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁} are linearly dependent ⟺  ∑ 𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖𝑖𝑖 = 0 for some non-zero values of 𝑎𝑎𝑖𝑖  
 ⟺ at least one of the 𝐯𝐯𝑖𝑖 can be written as a linear combination of the others. 

Dimensions of span: 

{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁} are linearly independent  ⟺ dim[span{𝐯𝐯1, 𝐯𝐯2, … , 𝐯𝐯𝑁𝑁}] = 𝑁𝑁 
{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁} are linearly dependent     ⟺ dim[span{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁}] ≤ 𝑁𝑁 

Basis: 

{𝐞𝐞1,𝐞𝐞2,⋯ , 𝐞𝐞N} is a basis of space 𝒱𝒱 ⟺ {𝐞𝐞1,𝐞𝐞2,⋯ , 𝐞𝐞N} are linearly independent vectors 
which span the whole of 𝒱𝒱 whose dimension is therefore dim[𝒱𝒱] = 𝑁𝑁 
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C. INNER PRODUCT 

 

* Remember that linearity in 1st or 2nd argument is an arbitrary choice. A typical choice in physics is to 
have linearity in the 2nd argument and conjugate linearity in the first. This alternative definition of 
inner product is typically written as ⟨𝐚𝐚|𝐛𝐛⟩ 

 

Useful applications of the inner product: 

 

Axioms of (Hermitian) inner product: 

• (Conjugate) Symmetry 〈𝐚𝐚,𝐛𝐛〉 = 〈𝐛𝐛,𝐚𝐚〉∗ 
• Positive definiteness 〈𝐚𝐚,𝐚𝐚〉 ≥ 0 (only equal to 0 if ‖𝐚𝐚‖ = 0) 
• Linearity in 1st argument* which implies (conjugate) linearity in 2nd 

〈𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛, 𝐜𝐜〉 = 𝛼𝛼〈𝐚𝐚, 𝐜𝐜〉 + 𝛽𝛽〈𝐛𝐛, 𝐜𝐜〉 
〈𝐜𝐜,𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛〉 = 𝛼𝛼∗〈𝐜𝐜,𝐚𝐚〉 + 𝛽𝛽∗〈𝐜𝐜,𝐛𝐛〉 

 
Definitions associated to inner product: 

• Norm of a vector: ‖𝐚𝐚‖ = �〈𝐚𝐚,𝐚𝐚〉 
• Orthogonality between vectors: 〈𝐚𝐚,𝐛𝐛〉 = 0  ⟺    𝐚𝐚 and 𝐛𝐛 are orthogonal 

 

 

Orthogonal and orthonormal basis: 

{𝐞𝐞1,𝐞𝐞2,⋯ , 𝐞𝐞N} orthogonal basis  ⟺  �𝐞𝐞𝑖𝑖 , 𝐞𝐞𝑗𝑗� = 0 if 𝑖𝑖 ≠ 𝑗𝑗  

{𝐞𝐞�1,𝐞𝐞�2,⋯ , 𝐞𝐞�N} orthonormal basis  ⟺  �𝐞𝐞�𝑖𝑖 , 𝐞𝐞�𝑗𝑗� = �
0 if 𝑖𝑖 ≠ 𝑗𝑗
1 if 𝑖𝑖 = 𝑗𝑗   = 𝛿𝛿𝑖𝑖𝑗𝑗  Kronecker delta 

 

Components of a vector in orthogonal (or orthonormal) basis: 

Components of a vector: 𝑣𝑣𝑖𝑖 = ⟨𝐯𝐯,𝐞𝐞𝑖𝑖⟩
⟨𝐞𝐞𝑖𝑖,𝐞𝐞𝑖𝑖⟩

    if {𝐞𝐞1,𝐞𝐞2,⋯ , 𝐞𝐞N} is orthogonal basis 

Components of a vector: 𝑣𝑣𝑖𝑖 = ⟨𝐯𝐯,𝐞𝐞�𝑖𝑖⟩    if {𝐞𝐞�1,𝐞𝐞�2,⋯ , 𝐞𝐞�N} is orthonormal basis 

 

Projection of a vector into a subspace: 

Space 𝑉𝑉; Subspace 𝑊𝑊 = span{𝐞𝐞1,𝐞𝐞2,⋯ , 𝐞𝐞N} orthogonal basis; 𝐰𝐰 ∈ 𝑊𝑊 closest vector to 𝐯𝐯 ∈ 𝑉𝑉 

𝐰𝐰 =
⟨𝐯𝐯,𝐞𝐞1⟩
⟨𝐞𝐞1, 𝐞𝐞1⟩

𝐞𝐞1 +
⟨𝐯𝐯,𝐞𝐞2⟩
⟨𝐞𝐞2,𝐞𝐞2⟩

𝐞𝐞2 + ⋯+
⟨𝐯𝐯,𝐞𝐞𝑁𝑁⟩
⟨𝐞𝐞𝑁𝑁,𝐞𝐞𝑁𝑁⟩

𝐞𝐞𝑁𝑁 

 (but only if {𝐞𝐞1,𝐞𝐞2,⋯ , 𝐞𝐞N} is orthogonal basis) 

Hermitian inner product of vectors in terms of orthonormal basis components: 

〈𝐚𝐚,𝐛𝐛〉 = �𝑎𝑎𝑖𝑖𝑏𝑏𝑖𝑖∗ 

𝐚𝐚 = ∑ 𝑎𝑎𝑖𝑖𝐞𝐞�𝑖𝑖𝑖𝑖  and 𝐛𝐛 = ∑ 𝑏𝑏𝑖𝑖𝐞𝐞�𝑖𝑖𝑖𝑖  with {𝐞𝐞�𝑖𝑖} orthonormal basis. 
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D. FUNCTION VECTOR SPACES 

 

With this definition we can now calculate norms, distances and projections between functions. 

Possible basis for this vector space: “Delta functions” of position, coefficients of 𝑥𝑥 (i.e. a Taylor 
expansion), etc… 

 

PROBLEMS: 

UNDERSTANDING SPAN, LINEAR DEPENDENCE AND INDEPENDENCE 

We know that span{𝐯𝐯𝟏𝟏,𝐯𝐯𝟐𝟐,𝐯𝐯𝟑𝟑} can have 0, 1, 2 or 3 dimensions. It will have 3 dimensions only if the 
vectors are linearly independent. It will have 0, 1 or 2 dimensions if the vectors are linearly 
dependent.  

 

How can we mathematically tell the different cases apart? Let’s see examples of them: 

1) Check the linear independence of vectors 𝐯𝐯1 = (1,1,0), 𝐯𝐯2 = (1,0,1) and 𝐯𝐯3 = (0,1,1) 

Sol: 

Linear independence: The equation 𝑎𝑎1𝐯𝐯𝟏𝟏 + 𝑎𝑎2𝐯𝐯𝟐𝟐 + 𝑎𝑎3𝐯𝐯𝟑𝟑 = 𝟎𝟎 has no solutions apart from the trivial 
one. Write down the actual vectors and write the equations component by component: 

𝑎𝑎1 �
1
1
0
� + 𝑎𝑎2 �

1
0
1
� + 𝑎𝑎3 �

0
1
1
� = �

0
0
0
� 

�
𝑎𝑎1 + 𝑎𝑎2 = 0
𝑎𝑎1 + 𝑎𝑎3 = 0
𝑎𝑎2 + 𝑎𝑎3 = 0

   
(𝐸𝐸𝐸𝐸. 1)
(𝐸𝐸𝐸𝐸. 2)
(𝐸𝐸𝐸𝐸. 3)

 

Solve for the coefficients: 

The set of functions 𝑓𝑓(𝑥𝑥) in an interval [𝑎𝑎, 𝑏𝑏] defines an (infinite-dimensional) vector space. 

Hermitian inner product for function vector space: 

〈𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)〉 = � 𝑓𝑓(𝑥𝑥)𝑔𝑔∗(𝑥𝑥)d𝑥𝑥
𝑏𝑏

𝑎𝑎
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(1)-(2) → 𝑎𝑎2 − 𝑎𝑎3 = 0 → 𝑎𝑎3 = 𝑎𝑎2 

Into (3) 𝑎𝑎2 + 𝑎𝑎3 = 0 → 𝑎𝑎2 + 𝑎𝑎2 = 0 → 𝑎𝑎2 = 𝑎𝑎3 = 0 

Into (1) 𝑎𝑎1 = −𝑎𝑎2 = 0 

The only solution is the trivial one 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 0. 

Therefore, the vectors are linearly independent 

 

2) Check the linear dependence of vectors 𝐯𝐯1 = (1,1,0), 𝐯𝐯2 = (1,0,1) and 𝐯𝐯3 = (0,1,−1). How 
can we mathematically check the number of vectors which are redundant in terms of the 
span? 

Linear dependence: The equation 𝑎𝑎1𝐯𝐯𝟏𝟏 + 𝑎𝑎2𝐯𝐯𝟐𝟐 + 𝑎𝑎3𝐯𝐯𝟑𝟑 = 𝟎𝟎 has solutions different from the trivial 
one. 

Write down the actual vectors and write the equations component by component: 

𝑎𝑎1 �
1
1
0
� + 𝑎𝑎2 �

1
0
1
� + 𝑎𝑎3 �

0
1
−1

� = �
0
0
0
� 

�
𝑎𝑎1 + 𝑎𝑎2 = 0
𝑎𝑎1 + 𝑎𝑎3 = 0
𝑎𝑎2 − 𝑎𝑎3 = 0

   
(𝐸𝐸𝐸𝐸. 1)
(𝐸𝐸𝐸𝐸. 2)
(𝐸𝐸𝐸𝐸. 3)

 

Solve for the coefficients: 

(1)-(2) → 𝑎𝑎2 − 𝑎𝑎3 = 0 → 𝑎𝑎3 = 𝑎𝑎2 

Into (3) 𝑎𝑎3 − 𝑎𝑎3 = 0 → True for any arbitrary value 𝑎𝑎3 = 𝜆𝜆 → 𝑎𝑎2 = 𝜆𝜆 

Into (1) → 𝑎𝑎1 + 𝑎𝑎3 = 0 → 𝑎𝑎1 + 𝜆𝜆 = 0 → 𝑎𝑎1 = −𝜆𝜆  

Therefore, the general solution to the system is: 

{𝑎𝑎1 = −𝜆𝜆,𝑎𝑎2 = 𝜆𝜆,𝑎𝑎3 = 𝜆𝜆} 

Therefore, the vectors are linearly dependent. 

The solution has 1 degree of freedom. Interestingly notice that we can write the general solution as 
the equation of a line, in the parameter space of (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) = 𝜆𝜆 ⋅ (−1,1,1). 

 

In this case, one of the three vectors is redundant in terms of the span. 

The span{𝐯𝐯𝟏𝟏,𝐯𝐯𝟐𝟐,𝐯𝐯𝟑𝟑} is therefore 2-dimensional (a plane) 

This will be clarified when we study the “theorem of dimensions” in the matrices lecture. 

i.e. if we remove one of the vectors, being a linear combination of the others, the remaining two will 
be independent. 

When the solution to ∑𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖 = 0 has N degrees of freedom, it means that N of the vectors are 
redundant in terms of the span (and can be removed) 
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3) Check the linear dependence of vectors 𝐯𝐯1 = (0,−1,1), 𝐯𝐯2 = (0,1,−1) and 𝐯𝐯3 = (0,2,−2). 
State the dimension of their span, and state which vectors could be removed from the set 
without affecting the span. 

By inspection we can immediately see that the three vectors are parallel, in the same line. So, a 
quick answer could be: the span is one dimensional, we can remove any two of the three vectors. 

But it is interesting to see how this affects the solutions of the equation  ∑𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖 = 0 

𝑎𝑎1 �
0
−1
1
� + 𝑎𝑎2 �

0
1
−1

� + 𝑎𝑎3 �
0
2
−2

� = �
0
0
0
� 

�
0 = 0

−𝑎𝑎1 + 𝑎𝑎2 + 2𝑎𝑎3 = 0
𝑎𝑎1 − 𝑎𝑎2 − 2𝑎𝑎3 = 0

   
(𝐸𝐸𝐸𝐸. 1)
(𝐸𝐸𝐸𝐸. 2)
(𝐸𝐸𝐸𝐸. 3)

 

From (2) → 𝑎𝑎1 = 𝑎𝑎2 + 2𝑎𝑎3 
 Into (3) → 0 = 0 

What’s going on? What happens is that any combination in which 𝑎𝑎1 = 𝑎𝑎2 + 2𝑎𝑎3 is a valid solution. 
Therefore, we have two degrees of freedom, we can choose 𝑎𝑎2 = 𝜆𝜆, 𝑎𝑎3 = 𝜇𝜇, and 𝑎𝑎1 = 𝜆𝜆 + 2𝜇𝜇. The 
general solution to the system can be written as the parametric equation of a plane in the space of 
coefficients (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) = 𝜆𝜆(1,1,0) + 𝜇𝜇(2,0,1).  

 

The solution has 2 degrees of freedom, which means that two of the three vectors are redundant in 
terms of the span. The span{𝐯𝐯𝟏𝟏,𝐯𝐯𝟐𝟐,𝐯𝐯𝟑𝟑} is (3 vectors – 2 degrees of freedom of the linear 
independence equation) = 1-dimensional line. 

In this case, any two of the vectors could be removed without affecting the span. 
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4) Check the linear dependence of vectors 𝐯𝐯1 = (0,−1,1), 𝐯𝐯2 = (0,1,−1) and 𝐯𝐯3 = (0,1,2). 
State the dimension of their span, and state which vectors could be removed from the set 
without affecting the span. 

This time, the situation is a bit trickier. It is clear that 𝐯𝐯1 and 𝐯𝐯2 are parallel, so they count as one 
when defining a span. Vector 𝐯𝐯3 is independent of either 𝐯𝐯1 or 𝐯𝐯2. This all means that 𝐯𝐯𝟏𝟏,𝐯𝐯𝟐𝟐,𝐯𝐯𝟑𝟑 are 
linearly dependent, but we could say that the blame for that falls more heavily on 𝐯𝐯1 and 𝐯𝐯2 than on  
𝐯𝐯𝟑𝟑.  In fact, span{𝐯𝐯𝟏𝟏,𝐯𝐯𝟐𝟐,𝐯𝐯𝟑𝟑} will be a two-dimensional plane, and we can remove either 𝐯𝐯1 or 𝐯𝐯2 
without affecting the span. However, if we choose wrongly and decided to remove 𝐯𝐯𝟑𝟑, then the span 
would lose one additional dimension! How is all this reflected on the maths? 

𝑎𝑎1𝐯𝐯𝟏𝟏 + 𝑎𝑎2𝐯𝐯𝟐𝟐 + 𝑎𝑎3𝐯𝐯𝟑𝟑 = 𝟎𝟎 

𝑎𝑎1 �
0
−1
1
� + 𝑎𝑎2 �

0
1
−1

� + 𝑎𝑎3 �
0
1
2
� = �

0
0
0
� 

�
0 = 0

−𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 = 0
𝑎𝑎1 − 𝑎𝑎2 + 2𝑎𝑎3 = 0

   
(𝐸𝐸𝐸𝐸. 1)
(𝐸𝐸𝐸𝐸. 2)
(𝐸𝐸𝐸𝐸. 3)

 

Adding (2)+(3) we get 𝑎𝑎3 = 0.  

Substituting this into the other two equations just tells us that 𝑎𝑎1 = 𝑎𝑎2 = 𝜆𝜆, a free parameter. 

The general solution can be written in vector form as (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3) = 𝜆𝜆(1,1,0) and has one degree of 
freedom, so that the span{𝐯𝐯𝟏𝟏,𝐯𝐯𝟐𝟐,𝐯𝐯𝟑𝟑} is a (3 vectors – 1 degrees of freedom of the linear 
independence equation) = 2-dimensional plane. 

Maths is also telling us that vector 3 is special because the linear combinations that determine the 
linear dependence always have 𝑎𝑎3 = 0 and thus never involve 𝐯𝐯𝟑𝟑. Indeed, 𝐯𝐯𝟑𝟑 is more important than 
the other two, in terms of their span. 

 

 

 

These cases might seem trivial in this 3D case, but hopefully you can realize how understanding 
these results could be useful for understanding the span of a set of vectors in higher-dimensional 
spaces. 
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5) Let’s deal with 4-dimensional spaces. Check the linear dependence of vectors 𝐯𝐯1 = (−1,1,1,1), 
𝐯𝐯2 = (1,−1,1,1), 𝐯𝐯3 = (1,1,−1,1) and 𝐯𝐯4 = (1,1,1,1). 

Sol: 

Linear independence: The equation 𝑎𝑎1𝐯𝐯𝟏𝟏 + 𝑎𝑎2𝐯𝐯𝟐𝟐 + 𝑎𝑎3𝐯𝐯𝟑𝟑 + 𝑎𝑎4𝐯𝐯𝟒𝟒 = 𝟎𝟎 has no solutions apart from the 
trivial one. 

Write down the actual vectors and write the equations component by component: 

𝑎𝑎1 �

−1
1
1
1

�+ 𝑎𝑎2 �

1
−1
1
1

� + 𝑎𝑎3 �

1
1
−1
1

� + 𝑎𝑎4 �

1
1
1
1

� = �

0
0
0
0

� 

�

−𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4 = 0
𝑎𝑎1 − 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4 = 0
𝑎𝑎1 + 𝑎𝑎2 − 𝑎𝑎3 + 𝑎𝑎4 = 0
𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4 = 0

   

(𝐸𝐸𝐸𝐸. 1)
(𝐸𝐸𝐸𝐸. 2)
(𝐸𝐸𝐸𝐸. 3)
(𝐸𝐸𝐸𝐸. 4)

 

Solve for the coefficients: 

(1)+(2) → 𝑎𝑎3 + 𝑎𝑎4 = 0 → 𝑎𝑎3 = −𝑎𝑎4 

(2)+(3) → 𝑎𝑎1 + 𝑎𝑎4 = 0 → 𝑎𝑎1 = −𝑎𝑎4 

(3)+(4) → 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎4 = 0 → 𝑎𝑎2 = −𝑎𝑎1−𝑎𝑎4 = 0 

Substituting the previous 3 results into (1): −𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4 = 0 → 𝑎𝑎4 − 𝑎𝑎4 + 𝑎𝑎4 = 0 → 𝑎𝑎4 = 0  

And therefore 𝑎𝑎1 = 𝑎𝑎3 = −𝑎𝑎4 = 0 

The only solution is the trivial one 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 𝑎𝑎4 = 0. 

Therefore, the vectors are linearly independent 
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EXPANDING A VECTOR IN A BASIS 

6) Expand the vector 𝐯𝐯 = (−1,1,1) in the basis {𝐞𝐞𝟏𝟏, 𝐞𝐞𝟐𝟐,𝐞𝐞𝟑𝟑} with 𝐞𝐞𝟏𝟏 = (1,0,1), 𝐞𝐞𝟐𝟐 = (0,1,1), and 
𝐞𝐞𝟑𝟑 = (1,1,0). 

First check that the vectors in the basis are linearly independent, so that we can expand them. 

Now we need to solve for the linear coefficients 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 such that: 

𝐯𝐯 = 𝑎𝑎1𝐞𝐞𝟏𝟏 + 𝑎𝑎2𝐞𝐞𝟐𝟐 + 𝑎𝑎3𝐞𝐞𝟑𝟑 

Substitute the actual vectors and write the equations component by component: 

�
−1
1
1
� = 𝑎𝑎1 �

1
0
1
� + 𝑎𝑎2 �

0
1
1
� + 𝑎𝑎3 �

1
1
0
� 

�
−1 = 𝑎𝑎1 + 𝑎𝑎3
1 = 𝑎𝑎2 + 𝑎𝑎3
1 = 𝑎𝑎1 + 𝑎𝑎2

   
(𝐸𝐸𝐸𝐸. 1)
(𝐸𝐸𝐸𝐸. 2)
(𝐸𝐸𝐸𝐸. 3)

 

Solve for the coefficients: 

From (1), 𝑎𝑎3 = −𝑎𝑎1 − 1 

From (2), 𝑎𝑎2 = 1 − 𝑎𝑎3, and substituting the result from (1) 𝑎𝑎2 = 2 + 𝑎𝑎1 

Substituting into (3), 1 = 𝑎𝑎1 + 2 + 𝑎𝑎1  →   2𝑎𝑎1 = −1 →   𝑎𝑎1 = −1
2
 

Therefore 𝑎𝑎2 = 2 + 𝑎𝑎1 = 3
2
 

Into (1), 𝑎𝑎3 = −𝑎𝑎1 − 1 = −1
2
 

So finally 𝐯𝐯 = −1
2
𝐞𝐞𝟏𝟏 + 3

2
𝐞𝐞𝟐𝟐 −

1
2
𝐞𝐞𝟑𝟑 

We could even write 𝐯𝐯 = 1
2
�
−1
3
−1

� in basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑}  

 

7) Find the coordinates 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 of the vector 𝐯𝐯 = (1,2,3) with respect to the basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑} 
given by vectors 𝐞𝐞𝟏𝟏 = (1,1,0), 𝐞𝐞𝟐𝟐 = (1,0,1) and 𝐞𝐞𝟑𝟑 = (1,1,1). 

Sol: 

First check that the vectors in the basis are linearly independent, so that we can expand them. 

Now we need to solve for the linear coefficients 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 such that: 

𝐯𝐯 = 𝑎𝑎1𝐞𝐞𝟏𝟏 + 𝑎𝑎2𝐞𝐞𝟐𝟐 + 𝑎𝑎3𝐞𝐞𝟑𝟑 

Substitute the actual vectors and write the equations component by component: 

�
1
2
3
� = 𝑎𝑎1 �

1
1
0
� + 𝑎𝑎2 �

1
0
1
� + 𝑎𝑎3 �

1
1
1
� 
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�
1 = 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3

2 = 𝑎𝑎1 + 𝑎𝑎3
3 = 𝑎𝑎2 + 𝑎𝑎3

   
(𝐸𝐸𝐸𝐸. 1)
(𝐸𝐸𝐸𝐸. 2)
(𝐸𝐸𝐸𝐸. 3)

 

Solve for the coefficients: 

(3) into (1) → 1 = 𝑎𝑎1 + 3 → 𝑎𝑎1 = −2 

Into (2) → 𝑎𝑎3 = 2 − 𝑎𝑎3 = 4 

Into (3) → 𝑎𝑎2 = 3 − 𝑎𝑎3 = −1 

Therefore, 𝐯𝐯 = �
−2
−1
4
� in basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑} 
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OTHER VECTOR SPACES 

8) Consider the set of all complex numbers 𝑧𝑧 ∈ ℂ. Is this set a vector space?  

You can check that the complex numbers fulfil all the axioms. 
Therefore, the set of complex numbers can be considered a vector space. 
 

9) If the set of all complex numbers 𝑧𝑧 ∈ ℂ is indeed a vector space, what is its dimension?  

The dimension of a vector space is given by the number of independent “vectors” required to span it 
(i.e. by the size of its basis). The problem is, how do we define the span? span{𝐯𝐯1, … , 𝐯𝐯𝑁𝑁} = ∑𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖 
for any scalar 𝑎𝑎𝑖𝑖. But do we allow 𝑎𝑎𝑖𝑖  to be complex?  

If we don’t allow 𝑎𝑎𝑖𝑖  to be complex, only real, then the complex numbers have two (real) dimensions. 
To show this, a basis for the complex numbers would be {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐} with 𝐞𝐞𝟏𝟏 = 1 and 𝐞𝐞𝟐𝟐 = 𝑖𝑖. To be a 
valid basis, the vectors need to be (i) linearly independent, and (ii) span the whole space 

(i) Is fulfilled, because 𝑎𝑎1𝐞𝐞𝟏𝟏 + 𝑎𝑎2𝐞𝐞𝟐𝟐 = 𝟎𝟎 → 𝑎𝑎1 + 𝑖𝑖𝑎𝑎2 = 0 → 𝑎𝑎1 = 𝑎𝑎2 = 0 has only the trivial 
solution, if only real coefficients are allowed. 

(ii) Is true, because any complex number can be written as a linear combination of {1,i} 

If on the other hand we allow 𝑎𝑎𝑖𝑖  to be complex, then ℂ has only one (complex) dimension, because 
we can define a basis {𝐞𝐞𝟏𝟏 = 1} and any complex vector is then written as 𝑧𝑧 = (𝑎𝑎1)(1) = 𝑎𝑎1. 

  

INTERESTING STORY:  William Rowan Hamilton, born 1805, knew that the complex numbers could 
be interpreted as points in a plane, and he was looking for a way to do the same for points in three-
dimensional space. Points in space can be represented by their coordinates, which are triples of 
numbers, and for many years he had known how to add and subtract triples of numbers. However, 
Hamilton had been stuck on the problem of multiplication and division for a long time. Complex 
numbers, i.e. points in a plane, CAN be multiplied and divided with each other. However, he spent 
his life trying to find some system of numbers in which triplets of numbers could be multiplied and 
divided. 

One day, crossing a bridge, he realised that what he was looking for didn’t exist. The only way to 
have a system with numbers that can be multiplied and divided, was to have quadruplets (i.e. sets of 
4 numbers, or points on a 4 dimensional space). He thus invented quaternions. This involved the real 
line (1), and three imaginary units (i, j ,k) defined by the relations 𝑖𝑖2 = 𝑗𝑗2 = 𝑘𝑘2 = 𝑖𝑖𝑗𝑗𝑘𝑘 = −1. Vectors 
in 3D space could then be represented as “pure quaternions”, numbers with only imaginary 
components and zero real part. This gives rise to our common notation of (i, j ,k) as unit vectors in 
3D space! 

Importantly, he found that these quaternions CAN be multiplied or divided directly to produce a new 
quaternion. Interestingly, when multiplying two pure quaternions representing vectors in 3D space, 
the result is a non-pure quaternion whose real part is the DOT PRODUCT of the original vectors, and 
whose imaginary part (i,j,k) corresponds to the CROSS PRODUCT 3-D vector of the original numbers! 
THIS IS HOW dot and cross products were “discovered”! Later, quaternions fell largely into disuse, 
since it was easier to work with vectors and just define the dot and cross products axiomatically. The 
axioms of a vector space do not need to include the possibility of multiplying them or dividing them. 
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HERMITIAN INNER PRODUCT - PROOFS 
 

10) Prove the Schwarz’s inequality for complex vectors, which states: 

|〈𝐚𝐚,𝐛𝐛〉| ≤ ‖𝐚𝐚‖‖𝐛𝐛‖ 

Proof:  

(Do not get confused between the absolute value of a scalar |𝜆𝜆| and the norm of a vector ‖𝐯𝐯‖). 

Consider the linear combination 𝐚𝐚 + 𝜆𝜆𝐛𝐛 and calculate its squared norm, which must always be 
bigger or equal to zero: 

‖𝐚𝐚 + 𝜆𝜆𝐛𝐛‖2 = 〈𝐚𝐚 + 𝜆𝜆𝐛𝐛,𝐚𝐚 + 𝜆𝜆𝐛𝐛〉 ≥ 0 

Apply linearity in first argument of the inner product (inner product axiom): 

‖𝐚𝐚 + 𝜆𝜆𝐛𝐛‖2 = 〈𝐚𝐚,𝐚𝐚 + 𝜆𝜆𝐛𝐛〉 + 𝜆𝜆〈𝐛𝐛,𝐚𝐚 + 𝜆𝜆𝐛𝐛〉 ≥ 0 

Apply conjugate linearity in the second argument of the inner product (Hermitian inner product 
axiom): 

‖𝐚𝐚 + 𝜆𝜆𝐛𝐛‖2 = 〈𝐚𝐚,𝐚𝐚〉+ 𝜆𝜆∗〈𝐚𝐚,𝐛𝐛〉 + 𝜆𝜆〈𝐛𝐛,𝐚𝐚〉 + 𝜆𝜆𝜆𝜆∗〈𝐛𝐛,𝐛𝐛〉 ≥ 0 

Apply the conjugate symmetry of the inner product: 

‖𝐚𝐚 + 𝜆𝜆𝐛𝐛‖2 = 〈𝐚𝐚,𝐚𝐚〉+ 𝜆𝜆∗〈𝐚𝐚,𝐛𝐛〉 + 𝜆𝜆〈𝐚𝐚,𝐛𝐛〉∗ + 𝜆𝜆𝜆𝜆∗〈𝐛𝐛,𝐛𝐛〉 ≥ 0 

Now, remember that 〈𝐚𝐚,𝐚𝐚〉 = ‖𝐚𝐚‖2 > 0 and 〈𝐛𝐛,𝐛𝐛〉 = ‖𝐛𝐛‖2 > 0  are real positive numbers. However, 
do not forget that 〈𝐚𝐚,𝐛𝐛〉 is in general a complex number 𝛿𝛿 which has a certain amplitude and phase 
𝛿𝛿 = |𝛿𝛿|𝑒𝑒𝑖𝑖𝑖𝑖 = |〈𝐚𝐚,𝐛𝐛〉|𝑒𝑒𝑖𝑖𝑖𝑖. Also remember the identity for complex numbers 𝜆𝜆𝜆𝜆∗ = |𝜆𝜆|2. Substituting 
these we have: 

‖𝐚𝐚 + 𝜆𝜆𝐛𝐛‖2 = ‖𝐚𝐚‖2 + 𝜆𝜆∗|〈𝐚𝐚,𝐛𝐛〉|𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜆𝜆|〈𝐚𝐚,𝐛𝐛〉|𝑒𝑒−𝑖𝑖𝑖𝑖 + |𝜆𝜆|2‖𝐛𝐛‖2 ≥ 0 
‖𝐚𝐚 + 𝜆𝜆𝐛𝐛‖2 = ‖𝐚𝐚‖2 + (𝜆𝜆∗𝑒𝑒𝑖𝑖𝑖𝑖 + 𝜆𝜆𝑒𝑒−𝑖𝑖𝑖𝑖)|〈𝐚𝐚,𝐛𝐛〉| + |𝜆𝜆|2‖𝐛𝐛‖2 ≥ 0 

This inequality must be true for EVERY complex value of 𝜆𝜆. To simplify the expression, let’s give 𝜆𝜆 the 
same phase as 〈𝐚𝐚,𝐛𝐛〉 but an arbitrary modulus 𝑟𝑟, i.e. we choose 𝜆𝜆 = 𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖: 

‖𝐚𝐚‖2 + (𝑟𝑟𝑒𝑒−𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 + 𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖)|〈𝐚𝐚,𝐛𝐛〉| + 𝑟𝑟2‖𝐛𝐛‖2 ≥ 0 

‖𝐚𝐚‖2 + 2𝑟𝑟|〈𝐚𝐚,𝐛𝐛〉| + 𝑟𝑟2‖𝐛𝐛‖2 ≥ 0 

This is a quadratic equation in 𝑟𝑟 which must be positive or zero for every real value of 𝑟𝑟. Therefore, 
the quadratic polynomial cannot have two real solutions (i.e. it cannot cross the x-axis, as then the 
polynomial would be negative in some region), which means that its discriminant must be smaller 
than or equal to zero (i.e. imaginary solutions or one single real double solution): 

Δ = (2|〈𝐚𝐚,𝐛𝐛〉|)2 − 4‖𝐚𝐚‖2‖𝐛𝐛‖2 ≤ 0 

|〈𝐚𝐚,𝐛𝐛〉|2 ≤ ‖𝐚𝐚‖2‖𝐛𝐛‖2 

|〈𝐚𝐚,𝐛𝐛〉| ≤ ‖𝐚𝐚‖‖𝐛𝐛‖ 
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11) Prove the triangle inequality for vectors, which states: 

‖𝐚𝐚 + 𝐛𝐛‖ ≤ ‖𝐚𝐚‖+ ‖𝐛𝐛‖ 
We want the proof to be valid for arbitrary N-dimensional vector spaces, as long as they 
fulfil the axioms of a vector space and those of an inner product, so it’s not enough to prove 
it geometrically. 
Hint: make use of Schwarz’s inequality! 

 
Solution:  
Since both the left- and right-hand sides are positive definite, by the positive definiteness axiom, we 
can square both sides and maintain the inequality (one is true if and only if the other one is true): 
 

‖𝐚𝐚 + 𝐛𝐛‖2 ≤ (‖𝐚𝐚‖+ ‖𝐛𝐛‖)2 
‖𝐚𝐚 + 𝐛𝐛‖2 ≤ ‖𝐚𝐚‖2 + ‖𝐛𝐛‖2 + 2‖𝐚𝐚‖‖𝐛𝐛‖ 

 
The left-hand side is: 

‖𝐚𝐚 + 𝐛𝐛‖2 = 〈𝐚𝐚 + 𝐛𝐛,𝐚𝐚 + 𝐛𝐛〉 
= 〈𝐚𝐚,𝐚𝐚 + 𝐛𝐛〉 + 〈𝐛𝐛,𝐚𝐚 + 𝐛𝐛〉 
= 〈𝐚𝐚,𝐚𝐚〉 + 〈𝐚𝐚,𝐛𝐛〉 + 〈𝐛𝐛,𝐚𝐚〉 + 〈𝐛𝐛,𝐛𝐛〉 
= ‖𝐚𝐚‖2 + ‖𝐛𝐛‖2 + 〈𝐚𝐚,𝐛𝐛〉 + 〈𝐛𝐛,𝐚𝐚〉 

Now, 〈𝐚𝐚,𝐛𝐛〉 and 〈𝐛𝐛,𝐚𝐚〉 are complex numbers, but thanks to the conjugate symmetry axiom we know 
that 〈𝐚𝐚,𝐛𝐛〉+ 〈𝐛𝐛,𝐚𝐚〉 = 〈𝐚𝐚,𝐛𝐛〉 + 〈𝐚𝐚,𝐛𝐛〉∗, and we know that 𝑧𝑧 + 𝑧𝑧∗ = 2 Re{𝑧𝑧} for any complex number, 
so we need to prove: 

‖𝐚𝐚‖2 + ‖𝐛𝐛‖2 + 2 Re{〈𝐚𝐚,𝐛𝐛〉} ≤ ‖𝐚𝐚‖2 + ‖𝐛𝐛‖2 + 2‖𝐚𝐚‖‖𝐛𝐛‖ 
 Re{〈𝐚𝐚,𝐛𝐛〉} ≤ ‖𝐚𝐚‖‖𝐛𝐛‖ 

But the real part of any complex number is smaller than or equal to its magnitude, which fulfills 
|〈𝐚𝐚,𝐛𝐛〉| ≤ ‖𝐚𝐚‖‖𝐛𝐛‖ by Schwartz’s inequality; therefore: 

Re{〈𝐚𝐚,𝐛𝐛〉} ≤ |〈𝐚𝐚,𝐛𝐛〉| ≤ ‖𝐚𝐚‖‖𝐛𝐛‖ 

 

BASIS 

12) Prove that the components of 𝐯𝐯 on a basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, … , 𝐞𝐞𝐍𝐍} are given by 𝑣𝑣𝑖𝑖 = 〈𝐯𝐯, 𝐞𝐞𝑖𝑖〉/〈𝐞𝐞𝑖𝑖, 𝐞𝐞𝑖𝑖〉 
only if the basis is orthogonal. 

 
Solution: When  {𝐞𝐞1,𝐞𝐞2, … , 𝐞𝐞𝑁𝑁} forms a basis, then we can write 𝐯𝐯 = ∑ 𝑣𝑣𝑛𝑛𝐞𝐞𝑛𝑛𝑛𝑛  where 𝑣𝑣𝑛𝑛 are the 
components of the vector in that basis.  
 
If we take the inner product of 𝐯𝐯 with 𝐞𝐞𝑖𝑖 then we have 〈𝐯𝐯,𝐞𝐞𝑖𝑖〉 = 〈∑ 𝑎𝑎𝑛𝑛𝐞𝐞𝑛𝑛𝑛𝑛 , 𝐞𝐞𝑖𝑖〉 which, thanks to the 
linearity axiom of the inner product, can be split into a sum of inner products 〈𝐯𝐯, 𝐞𝐞𝑖𝑖〉 = ∑ 𝑎𝑎𝑛𝑛〈𝐞𝐞𝑛𝑛, 𝐞𝐞𝑖𝑖〉𝑛𝑛 .  
 
If the basis is orthogonal, then all the terms in the sum in which 𝑛𝑛 ≠ 𝑖𝑖 will be zero, leaving only the 𝑖𝑖-
th single term: 〈𝐯𝐯,𝐞𝐞𝑖𝑖〉 = 𝑣𝑣𝑖𝑖〈𝐞𝐞𝑖𝑖, 𝐞𝐞𝑖𝑖〉, from which we can finally write 𝑣𝑣𝑖𝑖 = 〈𝐯𝐯,𝐞𝐞𝑖𝑖〉/〈𝐞𝐞𝑖𝑖, 𝐞𝐞𝑖𝑖〉. 
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13) Show that 
〈𝐯𝐯,𝐚𝐚〉
〈𝐚𝐚,𝐚𝐚〉

𝐚𝐚 = 〈𝐯𝐯,𝐚𝐚�〉 𝐚𝐚� where 𝐚𝐚� = 𝐚𝐚/‖𝐚𝐚‖. 

Solution: We apply the definition〈𝐚𝐚,𝐚𝐚〉 = ‖𝐚𝐚‖2 and conjugate linearity in the 2nd argument: 

〈𝐯𝐯,𝐚𝐚〉
〈𝐚𝐚,𝐚𝐚〉

𝐚𝐚 =
〈𝐯𝐯,𝐚𝐚〉
‖𝐚𝐚‖2

𝐚𝐚 = 〈𝐯𝐯,
𝐚𝐚

‖𝐚𝐚‖∗
〉  

𝐚𝐚
‖𝐚𝐚‖

= 〈𝐯𝐯,
𝐚𝐚
‖𝐚𝐚‖

〉 
𝐚𝐚
‖𝐚𝐚‖

= 〈𝐯𝐯,𝐚𝐚�〉 𝐚𝐚� 

 

14) Determine whether the basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑} is orthogonal, orthonormal, or otherwise. 

 𝐞𝐞𝟏𝟏 = (1,0,−1), 𝐞𝐞𝟐𝟐 = (1,1,1), 𝐞𝐞𝟑𝟑 = (1,−2,1). 

Solution: We need to check the inner product for all possible pairs: 

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟐𝟐〉 = (1,0,−1) ⋅ (1,1,1)∗ = 1 ⋅ 1 + (−1) ⋅ 1 = 0  

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟑𝟑〉 = (1,0,−1) ⋅ (1,−2,1)∗ = 1 − 1 = 0 

〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑〉 = (1,1,1) ⋅ (1,−2,1)∗ = 1 − 2 + 1 = 0 

So the basis is, at least, orthogonal. Is it orthonormal? 

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉 = (1,0,−1) ⋅ (1,0,−1)∗ = 2  

No it is not. We could easily convert it into an orthonormal basis by normalizing each basis vector. 

  

15) Write the vector 𝐯𝐯 = (1,−3,2) in terms of the orthogonal basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑} given by 𝐞𝐞𝟏𝟏 =
(1,0,−1), 𝐞𝐞𝟐𝟐 = (1,1,1), 𝐞𝐞𝟑𝟑 = (1,−2,1). 

Solution: Normally, finding the components involves solving a linear system of equations 

𝐯𝐯 = 𝑎𝑎1𝐞𝐞𝟏𝟏 + 𝑎𝑎2𝐞𝐞𝟐𝟐 + 𝑎𝑎3𝐞𝐞𝟑𝟑 

As was done in some of the problems above. Now, thanks to the basis being orthogonal, the recipe is 
MUCH easier! 

𝑎𝑎1 =
〈𝐯𝐯,𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏,𝐞𝐞𝟏𝟏〉

=
1 − 2
1 + 1

= −
1
2

 

𝑎𝑎2 =
〈𝐯𝐯,𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟐𝟐〉

=
1 − 3 + 2
1 + 1 + 1

= 0 

𝑎𝑎3 =
〈𝐯𝐯,𝐞𝐞𝟑𝟑〉
〈𝐞𝐞𝟑𝟑, 𝐞𝐞𝟑𝟑〉

=
1 + 6 + 2
1 + 4 + 1

=
9
6

=
3
2

 

Indeed, you can check: 

𝐯𝐯 = �−
1
2
� 𝐞𝐞𝟏𝟏 +

3
2
𝐞𝐞𝟑𝟑 
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COMPLEX BASIS: 

16) Determine whether the basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐} = {𝐱𝐱� + 𝑖𝑖𝐲𝐲�, 𝐱𝐱� − 𝑖𝑖𝐲𝐲�} is orthogonal, orthonormal, or 
otherwise, using the Hermitian inner product. 

Solution: To check for orthogonality, we need to check the inner product for the possible pairs, in 
this 2D case only one check. Remember the calculation of the inner product in terms of the 
components of an orthonormal basis: 〈𝐚𝐚,𝐛𝐛〉 = 𝑎𝑎1𝑏𝑏1∗ + 𝑎𝑎2𝑏𝑏2∗ = 𝐚𝐚 ⋅ 𝐛𝐛∗. 

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟐𝟐〉 = 〈�1
𝑖𝑖 � , � 1

−𝑖𝑖�〉 = 1 ⋅ 1∗ + (𝑖𝑖) ⋅ (−𝑖𝑖)∗ = 1 + 𝑖𝑖2 = 0  

So the basis is, at least, orthogonal. Is it orthonormal (i.e. unit length)? 

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉 = 〈�1
𝑖𝑖 � , �1

𝑖𝑖 �〉 = 1 ⋅ 1∗ + (𝑖𝑖) ⋅ (𝑖𝑖)∗ = 1 ⋅ 1 + (𝑖𝑖) ⋅ (−𝑖𝑖) = 1 + 1 = 2 

No it is not. We could easily convert it into an orthonormal basis by normalizing each basis vector by 
√2. 

 

17) Determine whether the basis {𝐞𝐞1,𝐞𝐞2, 𝐞𝐞3} = �𝐱𝐱�+𝑖𝑖𝐲𝐲�
√2

 , 𝑖𝑖𝐱𝐱�+𝐲𝐲�
√2

, 2+𝑖𝑖
√3
𝐳𝐳�� is orthogonal, orthonormal, or 

otherwise, using the Hermitian inner product. 

Solution: To check for orthogonality, we need to check the inner product for the possible pairs. 
Remember the calculation of the inner product in terms of the components of an orthonormal basis: 
〈𝐚𝐚,𝐛𝐛〉 = 𝑎𝑎𝑥𝑥𝑏𝑏𝑥𝑥∗ + 𝑎𝑎𝑦𝑦𝑏𝑏𝑦𝑦∗ + 𝑎𝑎𝑧𝑧𝑏𝑏𝑧𝑧∗ = 𝐚𝐚 ⋅ 𝐛𝐛∗ 

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟐𝟐〉 = �
𝐱𝐱� + 𝑖𝑖𝐲𝐲�
√2

� ⋅ �
𝑖𝑖𝐱𝐱� + 𝐲𝐲�
√2

�
∗

= �
𝐱𝐱� + 𝑖𝑖𝐲𝐲�
√2

� ⋅ �
−𝑖𝑖𝐱𝐱� + 𝐲𝐲�
√2

� = �
1
√2

⋅
−𝑖𝑖
√2
� + �

𝑖𝑖
√2

⋅
1
√2
� = 0 

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟑𝟑〉 = �
𝐱𝐱� + 𝑖𝑖𝐲𝐲�
√2

� ⋅ �
2 + 𝑖𝑖
√3

𝐳𝐳��
∗

= �
𝐱𝐱� + 𝑖𝑖𝐲𝐲�
√2

� ⋅ �
2 − 𝑖𝑖
√3

𝐳𝐳�� = 0 

〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑〉 = �
𝑖𝑖𝐱𝐱� + 𝐲𝐲�
√2

� ⋅ �
2 + 𝑖𝑖
√3

𝐳𝐳��
∗

= �
𝑖𝑖𝐱𝐱� + 𝐲𝐲�
√2

� ⋅ �
2 − 𝑖𝑖
√3

𝐳𝐳�� = 0 

So the basis is, at least, orthogonal. Is it orthonormal? 

〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉 = 〈
1
√2

�
1
𝑖𝑖
0
� ,

1
√2

�
1
𝑖𝑖
0
�〉  =

1
2
〈�

1
𝑖𝑖
0
� ,�

1
𝑖𝑖
0
�〉 =

1
2

(1 + (𝑖𝑖)(𝑖𝑖)∗) = 1 

〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟐𝟐〉 = 〈
1
√2

�
𝑖𝑖
1
0
� ,

1
√2

�
𝑖𝑖
1
0
�〉 =

1
2
〈�
𝑖𝑖
1
0
� ,�

𝑖𝑖
1
0
�〉  =

1
2 �

(𝑖𝑖)(𝑖𝑖)∗ + 1� = 1 

〈𝐞𝐞𝟑𝟑, 𝐞𝐞𝟑𝟑〉 = 〈
1
√3

�
0
0

2 + 𝑖𝑖
� ,

1
√3

�
0
0

2 + 𝑖𝑖
�〉 =

1
3
〈�

0
0

2 + 𝑖𝑖
� ,�

0
0

2 + 𝑖𝑖
�〉 =

1
3

[(2 + 𝑖𝑖)(2 + 𝑖𝑖)∗] =
5
3
≠ 1 

No, ‖𝐞𝐞𝟑𝟑‖ = �〈𝐞𝐞𝟑𝟑, 𝐞𝐞𝟑𝟑〉 = �5/3, so 𝐞𝐞𝟑𝟑 is not a unit vector. This is an orthogonal basis, but not 

orthonormal. (Note: It would have been orthonormal if 𝐞𝐞3 = 2+𝑖𝑖
√5
𝐳𝐳�). 
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PROJECTIONS: 

18) Find the projection of the vector 𝐯𝐯 = (3,1) into the subspace defined by vector 𝐞𝐞𝟏𝟏 = (1,1). 

Sol: 

The projection 𝐩𝐩 of the vector 𝐯𝐯 into the subspace, is given by a simple recipe.  

𝐩𝐩 =
〈𝐯𝐯, 𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉

𝐞𝐞𝟏𝟏 =
〈�3

1� , �1
1�〉

〈�1
1� , �1

1�〉
�1

1� =
3 + 1
1 + 1

�1
1� =

4
2
�1

1� = �2
2� 

 

 

19) Find the projection of the vector 𝐯𝐯 = (0,𝑎𝑎, 1), where 𝑎𝑎 is a real number, into the subspace 
defined by vectors 𝐞𝐞𝟏𝟏 = (1,1,− 1) and 𝐞𝐞𝟐𝟐 = (1,0,1). 

Sol: The problem is very easy once we realise that the two vectors of the subspace are orthogonal 
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟐𝟐〉 = 1 − 1 = 0 and, therefore, the projection 𝐩𝐩 of the vector 𝐯𝐯 into the subspace, is given by a 
simple recipe, identical to the one for finding the components of a vector in an orthogonal basis: 
 

𝐩𝐩 =
〈𝐯𝐯,𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉

𝐞𝐞𝟏𝟏 +
〈𝐯𝐯, 𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟐𝟐〉

𝐞𝐞𝟐𝟐 

=
𝑎𝑎 − 1

1 + 1 + 1
𝐞𝐞𝟏𝟏 +

1
1 + 1

𝐞𝐞𝟐𝟐 =
𝑎𝑎 − 1

3
𝐞𝐞𝟏𝟏 +

1
2
𝐞𝐞𝟐𝟐 

=
𝑎𝑎 − 1

3
(1,1,−1) +

1
2

(1,0,1) =
1
6

(1 + 2𝑎𝑎, 2𝑎𝑎 − 2,5− 2𝑎𝑎) 

 

An alternative 2 (easy method) would be to get the original vector 𝐯𝐯, and subtract from it the 
component that is perpendicular to the plane: 

𝐩𝐩 = 𝐯𝐯 −
〈𝐯𝐯,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 

or in more typical “vector” notation: 
𝐩𝐩 = 𝐯𝐯 − (𝐯𝐯 ⋅ 𝐧𝐧�)𝐧𝐧� 

with 𝐧𝐧� = (𝐞𝐞𝟏𝟏 × 𝐞𝐞𝟐𝟐)/‖𝐞𝐞𝟏𝟏 × 𝐞𝐞𝟐𝟐‖ 
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Alternative 3 (long method): This question could have been framed in the context of distances 
between points and planes. Find the vector within the plane given by 𝐫𝐫 = 𝜆𝜆(1,1,−1) + 𝜇𝜇(1,0,1) 
which has minimum distance to the point 𝐯𝐯 = (0,𝑎𝑎, 1). 

 
In the context of distances of points and planes, this problem would be a long one: first obtain the 
minimum distance 𝑑𝑑min = �𝐯𝐯 − 𝐫𝐫𝐩𝐩𝐩𝐩𝐚𝐚𝐧𝐧𝐞𝐞� ⋅ 𝐧𝐧� between the plane and the vector 𝐯𝐯 (which requires 
calculating 𝐧𝐧� = 𝐧𝐧

‖𝐧𝐧‖
 with 𝐧𝐧 = 𝐞𝐞𝟏𝟏 × 𝐞𝐞𝟐𝟐). Secondly equate �𝐫𝐫𝐩𝐩𝐩𝐩𝐚𝐚𝐧𝐧𝐞𝐞(𝜆𝜆, 𝜇𝜇) − 𝐯𝐯� = 𝑑𝑑min and solve a 

quadratic equation in 𝜆𝜆 and 𝜇𝜇 (at the same time!) to find the point in the plane closest to 𝐯𝐯. This is 
simplified with the knowledge that the quadratic must have only one solution, and so its discriminant 
must be zero. 
 
Lookout for this in an exam: don’t take the long route! Be open to different methods. 
 
Let’s do the long route just to show how inconvenient it would be: 
First calculate the minimum distance to the plane: 

𝐧𝐧 = 𝐞𝐞𝟏𝟏 × 𝐞𝐞𝟐𝟐 = (1,1,−1) × (1,0,1) = �
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
1 1 −1
1 0 1

� = 𝐱𝐱�(1) − 𝐲𝐲�(1 + 1) + 𝐳𝐳�(−1) = (1,−2,−1) 

𝐧𝐧� =
𝐞𝐞𝟏𝟏 × 𝐞𝐞𝟐𝟐
‖𝐞𝐞𝟏𝟏 × 𝐞𝐞𝟐𝟐‖

=
𝐧𝐧
‖𝐧𝐧‖

=
(1,−2,−1)
√1 + 4 + 1

=
1
√6

(1,−2,−1) 

 

𝑑𝑑min = �𝐫𝐫𝐩𝐩𝐩𝐩𝐚𝐚𝐧𝐧𝐞𝐞 − 𝐯𝐯� ⋅ 𝐧𝐧� = �(0,0,0) − (0, a, 1)� ⋅
1
√6

(1,−2,−1) =
1
√6

(2𝑎𝑎 + 1) 

 
Second find the point of minimum distance. For a plane it’s a bit more involved than for a line, 
because we have two free parameters. 
‖𝐫𝐫𝐩𝐩𝐩𝐩𝐚𝐚𝐧𝐧𝐞𝐞(𝜆𝜆, 𝜇𝜇) − 𝐯𝐯‖ = 𝑑𝑑min 
→ ‖𝜆𝜆(1,1,−1) + 𝜇𝜇(1,0,1) − (0,𝑎𝑎, 1)‖ = 𝑑𝑑min 

→ ‖(𝜆𝜆 + 𝜇𝜇, 𝜆𝜆 − 𝑎𝑎,−𝜆𝜆 + 𝜇𝜇 − 1)‖ =
2𝑎𝑎 + 1
√6

 

 
Computing the norm and squaring both sides: 

→ (𝜆𝜆 + 𝜇𝜇)2 + (𝜆𝜆 − 𝑎𝑎)2 + (−𝜆𝜆 + 𝜇𝜇 − 1)2 =
(2𝑎𝑎 + 1)2

6
 

 
Which we can write as a quadratic equation in 𝜆𝜆 (we could also have gone for a quadratic in 𝜇𝜇) 
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→ 3𝜆𝜆2 + (2 − 2𝑎𝑎)𝜆𝜆 + �1 + 𝑎𝑎2 + 2𝜇𝜇2 − 2𝜇𝜇 − (2𝑎𝑎+1)2

6
� = 0   (Eq. 1) 

 
Whose solution is given by the quadratic equation formula: 

𝜆𝜆 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎′𝑐𝑐

2𝑎𝑎′
 

The key to solving this equation easily is to know that the solution must necessarily be a single point, 
and therefore the two quadratic solutions must be the same one, which means that the part inside 
the square root (the discriminant) must be zero: 

𝑏𝑏2 − 4𝑎𝑎′𝑐𝑐 = 0 → (2 − 2𝑎𝑎)2 − 4(3)�1 + 𝑎𝑎2 + 2𝜇𝜇2 − 2𝜇𝜇 −
(2𝑎𝑎 + 1)2

6 � = 0 

→ 4 − 8𝑎𝑎 + 4𝑎𝑎2 − 12 − 12𝑎𝑎2 + 24𝜇𝜇2 − 24𝜇𝜇 + 8𝑎𝑎2 + 8𝑎𝑎 + 2 = 0 
→ 6(−1 − 4𝜇𝜇 + 4𝜇𝜇2) = 0 
 
Which, as it should be, has only one solution for 𝜇𝜇 

𝜇𝜇 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎′𝑐𝑐

2𝑎𝑎
=

4 ± √16 − 16
8

=
1
2

 

 
And therefore, the equation (Eq. 1) for the distance from the plane to the point when 𝜇𝜇 = 1

2
 becomes: 

3𝜆𝜆2 + (2 − 2𝑎𝑎)𝜆𝜆 +
(𝑎𝑎 − 1)2

3
= 0 

Which is a quadratic equation with only one solution for 𝜆𝜆 (as expected since we forced the 
determinant to be zero) 

𝜆𝜆 =
2𝑎𝑎 − 2

6
 

Substituting 𝜆𝜆 and 𝜇𝜇 into the equation of the plane, we finally find: 

𝐩𝐩 = 𝜆𝜆(1,1,−1) + 𝜇𝜇(1,0,1) =
2𝑎𝑎 − 2

6
(1,1,−1) +

1
2

(1,0,1) =
1
6

(1 + 2𝑎𝑎, 2𝑎𝑎 − 2,5 − 2𝑎𝑎) 

Exactly as we had obtained with the inner product method in just three lines! 
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FUNCTION VECTOR SPACES 

20) Consider the function space of functions 𝑓𝑓(𝑥𝑥) on the interval [0,1]. Find the projection of the 
function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 in the subspace spanned by the functions {𝑒𝑒1(𝑥𝑥), 𝑒𝑒2(𝑥𝑥), … , 𝑒𝑒𝑀𝑀(𝑥𝑥)} = 
{sin(𝜋𝜋𝑥𝑥), sin(2𝜋𝜋𝑥𝑥) , … , sin(𝑀𝑀𝜋𝜋𝑥𝑥)}. 

Solution: Let’s try to imagine what we are trying to do: consider the simple case 𝑀𝑀 = 2. We could 
visualize the situation as follows: 

 

We are projecting the infinite-dimensional vector corresponding to 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 with 𝑥𝑥 ∈ [0,1] into the 
plane formed by span{sin(𝑥𝑥), sin(2𝑥𝑥)}. This plane is the “functions space” given by all possible 
functions that can be written as a superposition of those two sine functions: 

Π(𝑥𝑥) = 𝑎𝑎1 sin(𝜋𝜋𝑥𝑥) + 𝑎𝑎2 sin(2𝜋𝜋𝑥𝑥) 

So, our task is to find a function which lives in that plane 𝑝𝑝(𝑥𝑥) ∈ Π(𝑥𝑥) such that its distance to 
𝑓𝑓(𝑥𝑥) = 𝑥𝑥 is minimal, i.e. find the coefficients 𝑎𝑎1 and 𝑎𝑎2 which make the function 𝑝𝑝(𝑥𝑥) as similar as 
possible to 𝑓𝑓(𝑥𝑥) = 𝑥𝑥. 

Amazingly, the maths are identical to the ones we used with geometrical vectors! If the vectors 𝐞𝐞𝑖𝑖 in 
the plane are orthogonal, then: 

𝐩𝐩 =
〈𝐯𝐯, 𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉

𝐞𝐞𝟏𝟏 +
〈𝐯𝐯, 𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟐𝟐〉

𝐞𝐞𝟐𝟐 +⋯ 

So let’s do it! 

First, let’s check if the functions 𝑒𝑒𝑖𝑖(𝑥𝑥) are all orthogonal to each other so that we can apply the 
above recipe. We could check all possible pairs separately, but in this case, we can do it in the 
general case: 

〈𝐞𝐞𝑚𝑚,𝐞𝐞𝑛𝑛〉 = � 𝑔𝑔𝑚𝑚(𝑥𝑥)𝑔𝑔𝑛𝑛∗(𝑥𝑥)d𝑥𝑥
1

0
= � sin(𝑚𝑚𝜋𝜋𝑥𝑥) sin(𝑛𝑛𝜋𝜋𝑥𝑥) d𝑥𝑥

1

0
 

Remember sin𝑎𝑎 sin𝑏𝑏 = 1
2

(cos(𝑎𝑎 − 𝑏𝑏) − cos(𝑎𝑎 + 𝑏𝑏)). Which makes the integral easy to do: 

〈𝐞𝐞𝑚𝑚,𝐞𝐞𝑛𝑛〉 =
1
2
� (cos((𝑚𝑚 − 𝑛𝑛)𝜋𝜋𝑥𝑥) − cos((𝑚𝑚 + 𝑛𝑛)𝜋𝜋𝑥𝑥) d𝑥𝑥
1

0

=
1
2
�
sin�(𝑚𝑚 − 𝑛𝑛)𝜋𝜋𝑥𝑥�

(𝑚𝑚− 𝑛𝑛)𝜋𝜋
−

sin�(𝑚𝑚 + 𝑛𝑛)𝜋𝜋𝑥𝑥�
(𝑚𝑚 + 𝑛𝑛)𝜋𝜋

�
𝑥𝑥=0

𝑥𝑥=1

=
sin�(𝑚𝑚 − 𝑛𝑛)𝜋𝜋�

2(𝑚𝑚− 𝑛𝑛)𝜋𝜋
−

sin�(𝑚𝑚 + 𝑛𝑛)𝜋𝜋�
2(𝑚𝑚 + 𝑛𝑛)𝜋𝜋
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We know that 𝑚𝑚 and 𝑛𝑛 are positive integers > 0. Therefore, the second term is always zero, while 

the first term is zero if 𝑚𝑚 ≠ 𝑛𝑛 and is equal to lim
𝑥𝑥→0

sin(𝑥𝑥)
2𝑥𝑥

= 1
2
 when 𝑚𝑚 = 𝑛𝑛. Indeed, we know that 

∫ sin2(𝑚𝑚𝜋𝜋𝑥𝑥) d𝑥𝑥1
0 = 1

2
. So, in summary: 

〈𝐞𝐞𝑚𝑚, 𝐞𝐞𝑛𝑛〉 =
1
2
𝛿𝛿𝑚𝑚𝑛𝑛 

So, the set of functions {sin(𝜋𝜋𝑥𝑥), sin(2𝜋𝜋𝑥𝑥) , … , sin(𝑀𝑀𝜋𝜋𝑥𝑥)} is an orthogonal basis!! and the norm of 
all the vectors in the basis is 1/√2. 

Now we can do the projection of 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 into the 𝑀𝑀-dimensional “plane” spanned by the 𝐞𝐞𝑖𝑖’s: 

𝐩𝐩 =
〈𝐟𝐟, 𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏,𝐞𝐞𝟏𝟏〉�����

𝑎𝑎1

𝐞𝐞𝟏𝟏 +
〈𝐟𝐟, 𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟐𝟐〉�����

𝑎𝑎2

𝐞𝐞𝟐𝟐 + ⋯+
〈𝐟𝐟, 𝐞𝐞𝑀𝑀〉
〈𝐞𝐞𝑀𝑀 ,𝐞𝐞𝑀𝑀〉�����

𝑎𝑎𝑀𝑀

𝐞𝐞𝑀𝑀 

𝑝𝑝(𝑥𝑥) =
〈𝐟𝐟, 𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏,𝐞𝐞𝟏𝟏〉�����

𝑎𝑎1

sin(𝜋𝜋𝑥𝑥) +
〈𝐟𝐟, 𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐,𝐞𝐞𝟐𝟐〉�����

𝑎𝑎2

sin(𝜋𝜋𝑥𝑥) +⋯+
〈𝐟𝐟, 𝐞𝐞𝑀𝑀〉
〈𝐞𝐞𝑀𝑀 ,𝐞𝐞𝑀𝑀〉�����

𝑎𝑎𝑀𝑀

sin(𝑚𝑚𝜋𝜋𝑥𝑥) 

𝑝𝑝(𝑥𝑥) = 𝑎𝑎1 sin(𝜋𝜋𝑥𝑥) + 𝑎𝑎2 sin(𝜋𝜋𝑥𝑥) + ⋯+ 𝑎𝑎𝑀𝑀 sin(𝑚𝑚𝜋𝜋𝑥𝑥) 

So, let’s do the calculation for the coefficients 𝑎𝑎𝑖𝑖. We already have the bottom inner products, so 
let’s calculate the top inner products. We can calculate them all simultaneously: 

〈𝐟𝐟, 𝐞𝐞𝑚𝑚〉 = � 𝑓𝑓(𝑥𝑥)𝑔𝑔𝑚𝑚∗ (𝑥𝑥)d𝑥𝑥
1

0
= � 𝑥𝑥 sin(𝑚𝑚𝜋𝜋𝑥𝑥) d𝑥𝑥

1

0
 

We can do integration by parts: ∫ 𝑢𝑢 d𝑣𝑣 = 𝑢𝑢 𝑣𝑣 − ∫ 𝑣𝑣 d𝑢𝑢 with 𝑢𝑢 = 𝑥𝑥, d𝑢𝑢 = d𝑥𝑥, d𝑣𝑣 = sin(𝑚𝑚𝜋𝜋𝑥𝑥)d𝑥𝑥, 

𝑣𝑣 = ∫ sin(𝑚𝑚𝜋𝜋𝑥𝑥)d𝑥𝑥 = −� 1
𝑚𝑚𝑚𝑚
� cos(𝑚𝑚𝜋𝜋𝑥𝑥). So: 

〈𝐟𝐟, 𝐞𝐞𝑚𝑚〉 = � 𝑥𝑥 sin(𝑚𝑚𝜋𝜋𝑥𝑥) d𝑥𝑥
1

0
= �−�

𝑥𝑥
𝑚𝑚𝜋𝜋

� cos(𝑚𝑚𝜋𝜋𝑥𝑥)�
𝑥𝑥=0

𝑥𝑥=1

���������������
�−(−1)𝑚𝑚

𝑚𝑚𝑚𝑚 �−0

−
1
𝑚𝑚𝜋𝜋

� cos(𝑚𝑚𝜋𝜋𝑥𝑥) d𝑥𝑥
1

0�����������
� 1𝑚𝑚𝑚𝑚sin(𝑚𝑚𝑚𝑚𝑥𝑥)�

0

1
=0

 

〈𝐟𝐟, 𝐞𝐞𝑚𝑚〉 =
(−1)𝑚𝑚−1

𝑚𝑚𝜋𝜋
 

So, we have: 

𝑎𝑎𝑚𝑚 =
〈𝐟𝐟, 𝐞𝐞𝑚𝑚〉
〈𝐞𝐞𝑚𝑚, 𝐞𝐞𝑚𝑚〉

= 2
(−1)𝑚𝑚−1

𝜋𝜋𝑚𝑚
 

and the projection is given by: 

𝑝𝑝(𝑥𝑥) = 𝑎𝑎1 sin(𝜋𝜋𝑥𝑥) + 𝑎𝑎2 sin(𝜋𝜋𝑥𝑥) + ⋯+ 𝑎𝑎𝑀𝑀 sin(𝑚𝑚𝜋𝜋𝑥𝑥) 

𝑝𝑝(𝑥𝑥) =
2
𝜋𝜋

sin(𝜋𝜋𝑥𝑥) +
−2
2𝜋𝜋

sin(2𝜋𝜋𝑥𝑥) +
2

3𝜋𝜋
sin(3𝜋𝜋𝑥𝑥) + ⋯+

2(−1)𝑀𝑀−1

𝑀𝑀𝜋𝜋
sin(𝑀𝑀𝜋𝜋𝑥𝑥) 

𝑝𝑝(𝑥𝑥) = �
2(−1)𝑚𝑚−1

𝑚𝑚𝜋𝜋
sin(𝑚𝑚𝜋𝜋𝑥𝑥)

𝑀𝑀

𝑚𝑚=1

 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 

1.2 (20) 

Indeed, this projection is an excellent approximation to 𝑓𝑓(𝑥𝑥) = 𝑥𝑥, and in fact gets better and better 
with increasing number of terms! 

 

If you understand all the steps, you are ready to understand the Fourier series and the Fourier 
transform, which is a topic for second year. 
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2. MATRICES 

2.1 INTRODUCTION TO MATRICES AS LINEAR TRANSFORMATIONS  
& BASIC MATRIX OPERATIONS 

  

Pre-requisite for these notes: 

Video lecture introduction to matrices and matrix-vector multiplication:  
[MATRICES 1] What IS a MATRIX? Essence and Motivation (29 min) 

 

SUMMARY OF CHAPTER 2.1 

LINEAR TRANSFORMATION OF VECTORS: 

 

 

REPRESENTATION AS A MATRIX: 

 

SIMPLE EXAMPLES OF LINEAR TRANSFORMATIONS 

Example: Rotation and scaling (both isotropic and anisotropic) in 2D and 3D. 
Example: Projection of 2D and 3D space into a line or a plane. 

MATRICES ACTING ON N-DIMENSIONAL SPACES 

A matrix can be any size 𝑀𝑀 × 𝑁𝑁, converting an N dimensional input into an M dimensional output. 
Example: Derivative of polynomials is a linear transformation which converts degree N to degree N-1 

Vector spaces can be many different things. A matrix could represent linear transformations to 
polynomials, colours in {R,G,B} space, etc. 
 

NESTED LINEAR TRANSFORMATIONS AS MATRIX MULTIPLICATION 

Example: projection followed by rotation vs. rotation followed by projection – matrices don’t 
commute in general: 𝐀𝐀𝐀𝐀 ≠ 𝐀𝐀𝐀𝐀 
Some matrices do commute with each other 𝐀𝐀𝐀𝐀 = 𝐀𝐀𝐀𝐀. Example: nested rotations on same axes. 

𝒜𝒜 is a linear  
transformation ⟺𝒜𝒜(𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛) = 𝛼𝛼𝒜𝒜(𝐚𝐚) + 𝛽𝛽𝒜𝒜(𝐛𝐛) 

 

𝒜𝒜(𝐯𝐯) = 𝒜𝒜(𝑣𝑣1𝐞𝐞1 +⋯+ 𝑣𝑣𝑁𝑁𝐞𝐞𝑁𝑁) 
= 𝑣𝑣1𝒜𝒜(𝐞𝐞1) +⋯+ 𝑣𝑣𝑁𝑁𝒜𝒜(𝐞𝐞𝑁𝑁) 

≝ �
|  |

𝒜𝒜(𝐞𝐞1) … 𝒜𝒜(𝐞𝐞𝑁𝑁)
|  |

��
𝑣𝑣1
⋮
𝑣𝑣𝑁𝑁
� = 𝐀𝐀𝐯𝐯 

 

https://www.youtube.com/watch?v=zAbkJtOAdpQ
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SUMMARY OF BASIC MATRIX OPERATIONS 

Addition of matrices 𝐀𝐀 + 𝐀𝐀 : add each corresponding element (matrices must have the same size) 

Multiplication of matrices 𝐀𝐀𝐀𝐀 : apply matrix multiplication 𝐀𝐀 to each of the columns of 𝐀𝐀 

The matrix multiplication 𝐀𝐀𝐀𝐀𝐯𝐯 corresponds to the nested transformations ℬ[𝒜𝒜(𝐯𝐯)]. 
Similarly to nested functions 𝑔𝑔[𝑓𝑓(𝑥𝑥)], first apply 𝒜𝒜 and THEN apply ℬ. 
Dimensions of vector spaces must match throughout the “chain”. 
Multiplication of matrices is not commutative 𝐀𝐀𝐀𝐀 ≠ 𝐀𝐀𝐀𝐀 (e.g. project then rotate) 
The rest of the properties of addition and multiplication are identical to scalars,  
but remembering that multiplication on the left is different to multiplication on the right: 
   𝐀𝐀(𝐀𝐀 + 𝐂𝐂) = 𝐀𝐀𝐀𝐀 + 𝐀𝐀𝐂𝐂 
   (𝐀𝐀 + 𝐀𝐀)𝐂𝐂 = 𝐀𝐀𝐂𝐂 + 𝐀𝐀𝐂𝐂 
    𝜆𝜆(𝐀𝐀 + 𝐀𝐀) = 𝜆𝜆𝐀𝐀 + 𝜆𝜆𝐀𝐀 
The identity matrix 𝐈𝐈 is the matrix version of the scalar 1. Its diagonal is 1’s, rest are 0’s. It 
does not transform vectors. Multiplying 𝐈𝐈 left or right leaves a matrix unchanged: 𝐀𝐀𝐈𝐈 = 𝐈𝐈𝐀𝐀 =
𝐀𝐀. 

Transpose of a matrix 𝐀𝐀𝑇𝑇 : swap rows by columns 
  (𝜆𝜆𝐀𝐀)𝑇𝑇 = 𝜆𝜆𝐀𝐀𝑇𝑇 
 (𝐀𝐀𝐀𝐀)𝑇𝑇 = 𝐀𝐀𝑇𝑇𝐀𝐀𝑇𝑇 (very careful with the order, it must be swapped!) 

Hermitian conjugate of a matrix: 𝐀𝐀† = (𝐀𝐀∗)𝑇𝑇 – conjugate each element and transpose the matrix. 
 (using symbol ‘dagger’ †)  
  Note that Hermitian inner product: 〈𝐮𝐮|𝐯𝐯〉 = 𝐮𝐮†𝐯𝐯 

Powers of matrices 𝐀𝐀𝑛𝑛 = 𝐀𝐀𝐀𝐀⋯𝐀𝐀 : multiply a matrix times itself 𝑛𝑛 times. 
 e.g. application in “directed graphs” and “Markov processes” 

 

ORTHOGONAL MATRICES: 

𝐀𝐀 is an orthogonal matrix 
⟺ 𝐀𝐀T = 𝐀𝐀−𝟏𝟏 

⟺ Columns of 𝐀𝐀 form an orthonormal (real) set of vectors 
 ⟺ 〈𝐱𝐱|𝐲𝐲〉 = 〈𝐀𝐀𝐱𝐱|𝐀𝐀𝐲𝐲〉 for any real vectors 𝐱𝐱 and 𝐲𝐲 

 

UNITARY MATRICES: 

Generalization of orthogonal matrices to matrices which are complex.  

𝐀𝐀 is a unitary matrix  
⟺ 𝐀𝐀† = 𝐀𝐀−𝟏𝟏 

⟺ Columns of 𝐀𝐀 form an orthonormal set of vectors 
⟺ 〈𝐱𝐱|𝐲𝐲〉 = 〈𝐀𝐀𝐱𝐱|𝐀𝐀𝐲𝐲〉 for any vectors 𝐱𝐱 and 𝐲𝐲 
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A. LINEAR TRANSFORMATIONS OF VECTORS 

A general transformation of vectors has a vector as input and produces a vector as output. In general, 
it maps every vector in an input 𝑁𝑁 dimensional vector space, into a given vector in an output 𝑀𝑀 
dimensional vector space. This includes the possibility of 𝑁𝑁 = 𝑀𝑀 = 1 which is the well-known case of 
a function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥). 

 

There is a special type of transformations called LINEAR TRANSFORMATIONS with the following 
property: 

 

Most functions (𝑓𝑓(𝑥𝑥) = 𝑥𝑥2, sin𝑥𝑥 , 𝑒𝑒𝑥𝑥 , 1 + 𝑥𝑥, ...) are NOT linear. The only 1D linear functions that exist 
can always be written as a multiplication 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥, where 𝑎𝑎 is a scalar. When the linear 
transformation acts on 𝑁𝑁 > 1 vectors, the scalar multiplication 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥 becomes a matrix-vector 
multiplication 𝒜𝒜(𝐯𝐯) = 𝐀𝐀𝐯𝐯. Therefore, matrices are the N-dimensional equivalent to scalar 
multiplication! 

Once we know that a transformation is linear, it is very easy to find a way to characterise it (obtaining 
the “fingerprints” of the transformation) by considering the decomposition of every input vector into 
its basis components and applying the linearity property: 

 

Therefore, the linear transformation is fully characterised by a list of 𝑁𝑁 vectors corresponding to how 
the transformation acts on each basis vector of the input space: 𝒜𝒜(𝐞𝐞1),𝒜𝒜(𝐞𝐞2),⋯ ,𝒜𝒜(𝐞𝐞𝑁𝑁). These are 
the “fingerprints” of the transformation. The matrix associated with this linear transformation is 
simply obtained by writing these vectors as the columns of the matrix. Every linear transformation 
of vectors can be represented by a matrix once we have chosen a certain basis for the input and 
output space. 

A visual trick to remember matrix-vector multiplication is to shift the vector up and write the result in 
the vector-shaped space left in the bottom right corner. Then each element is the dot product of the 
corresponding row and column of the inputs: 

�
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22� �

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = �

𝑎𝑎11𝑣𝑣𝑥𝑥 + 𝑎𝑎12𝑣𝑣𝑦𝑦
𝑎𝑎21𝑣𝑣𝑥𝑥 + 𝑎𝑎22𝑣𝑣𝑦𝑦

�       ⇝         
 �     

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦       �

�
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22� �

𝑎𝑎11𝑣𝑣𝑥𝑥 + 𝑎𝑎12𝑣𝑣𝑦𝑦
𝑎𝑎21𝑣𝑣𝑥𝑥 + 𝑎𝑎22𝑣𝑣𝑦𝑦

�
 

 

𝒜𝒜 is a linear  
transformation ⟺𝒜𝒜(𝛼𝛼𝐚𝐚 + 𝛽𝛽𝐛𝐛) = 𝛼𝛼𝒜𝒜(𝐚𝐚) + 𝛽𝛽𝒜𝒜(𝐛𝐛) 

 

𝒜𝒜(𝐯𝐯) = 𝒜𝒜(𝑣𝑣1𝐞𝐞1 +⋯+ 𝑣𝑣𝑁𝑁𝐞𝐞𝑁𝑁) 
= 𝑣𝑣1𝒜𝒜(𝐞𝐞1) +⋯+ 𝑣𝑣𝑁𝑁𝒜𝒜(𝐞𝐞𝑁𝑁) 

≝ �
|  |

𝒜𝒜(𝐞𝐞1) … 𝒜𝒜(𝐞𝐞𝑁𝑁)
|  |

��
𝑣𝑣1
⋮
𝑣𝑣𝑁𝑁
� = 𝐀𝐀𝐯𝐯 
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B. SIMPLE EXAMPLES OF LINEAR TRANSFORMATIONS 

ROTATIONS: 

1) Write down the matrix associated with a 90-degree rotation counter-clockwise in two 
dimensions. 

Solution: 

Think about where the unit vectors  𝐱𝐱� and  𝐲𝐲� end up after the transformation. 

 𝐱𝐱� = �1
0� →  𝒜𝒜(𝐱𝐱�) = �0

1� 

 𝐲𝐲� = �0
1� →  𝒜𝒜(𝐲𝐲�) = �−1

0 � 

Therefore, the associated matrix is (place the resulting 𝒜𝒜(𝐱𝐱�) and 𝒜𝒜(𝐲𝐲�) as the columns of the matrix): 

 𝐀𝐀 = �0 −1
1 0 � 

The transformed version of any vector is given by the matrix-times-vector multiplication: 

 𝒜𝒜(𝐯𝐯) = 𝐀𝐀𝐯𝐯 = �0 −1
1 0 � �

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = �

−𝑣𝑣𝑦𝑦
𝑣𝑣𝑥𝑥 � 

  

2) Write down the matrix associated with a 45-degree rotation clock-wise in two dimensions. 

 𝐱𝐱� = �1
0� →  𝒜𝒜(𝐱𝐱�) = 1

√2
� 1
−1� 

 𝐲𝐲� = �0
1� →  𝒜𝒜(𝐲𝐲�) = 1

√2
�1

1� 

Therefore, the associated matrix is: 

 𝐀𝐀 = 1
√2
� 1 1
−1 1� 

And the transformed version of any vector is: 

 𝒜𝒜(𝐯𝐯) = 𝐀𝐀𝐯𝐯 = 1
√2
� 1 1
−1 1� �

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = 1

√2
�
𝑣𝑣𝑥𝑥 + 𝑣𝑣𝑦𝑦
−𝑣𝑣𝑥𝑥 + 𝑣𝑣𝑦𝑦

� 

It’s quite impressive that this works so easily. For example: 

 𝐯𝐯 = �3
4� ends up in 𝐀𝐀𝐯𝐯 = 1

√2
� 3 + 4
−3 + 4� = 1

√2
�7

1�. You would not have guessed this easily without 

matrices! 
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3) Write down the matrix associated with an arbitrary 𝜃𝜃-degree rotation in two dimensions (as a 
convention, we use 𝜃𝜃 > 0 for anticlockwise rotation, 𝜃𝜃 < 0 for clockwise rotation, as the right 
hand rule results in the thumb pointing along +z or -z, respectively). 

 

𝐱𝐱� = �1
0� →  𝒜𝒜(𝐱𝐱�) = �cos𝜃𝜃

sin𝜃𝜃� 

𝐲𝐲� = �0
1� →  𝒜𝒜(𝐲𝐲�) = �− sin𝜃𝜃

cos𝜃𝜃 � 

Therefore, the associated matrix is: 

𝐀𝐀 = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � 

And the transformed version of any vector is: 

𝒜𝒜(𝐯𝐯) = 𝐀𝐀𝐯𝐯 = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � �

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = �

𝑣𝑣𝑥𝑥 cos𝜃𝜃 − 𝑣𝑣𝑦𝑦 sin𝜃𝜃
𝑣𝑣𝑥𝑥 sin𝜃𝜃 + 𝑣𝑣𝑦𝑦 cos𝜃𝜃� 

 

SCALING 

4) Write down the matrix associated with a scaling of 2D space by a factor 𝐾𝐾. What is the matrix 
associated to a transformation that leaves everything unchanged? 

𝐱𝐱� = �1
0� →  𝒜𝒜(𝐱𝐱�) = �𝐾𝐾0� 

𝐲𝐲� = �0
1� →  𝒜𝒜(𝐲𝐲�) = �0

𝐾𝐾� 

Therefore, the associated matrix is: 

 𝐀𝐀 = �𝐾𝐾 0
0 𝐾𝐾� 

And the transformed version of any vector is: 

 𝒜𝒜(𝐯𝐯) = 𝐀𝐀𝐯𝐯 = �𝐾𝐾 0
0 𝐾𝐾��

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = �

𝐾𝐾𝑣𝑣𝑥𝑥
𝐾𝐾𝑣𝑣𝑦𝑦

� 

The matrix that leaves everything unchanged is called the identity matrix, often written as 𝐈𝐈, and 
corresponds to the case above when 𝐾𝐾 = 1 (or to the 2D rotation matrix when 𝜃𝜃 = 0). 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.1 (6) 

 

5) Write down the matrix which scales space in the 𝑥𝑥-direction by a factor of 2, and scales space 
in the 𝑦𝑦-direction by a factor of 1/2.  

𝐱𝐱� = �1
0� →  𝒜𝒜(𝐱𝐱�) = �2

0� 

𝐲𝐲� = �0
1� →  𝒜𝒜(𝐲𝐲�) = � 0

1/2� 

Therefore, the associated matrix is: 

 𝐀𝐀 = �2 0
0 1/2� 

 
PROJECTION IN 2D 

 

6) Write down the matrix whose associated linear transformation projects 2-D space into the x-
axis. 

𝐱𝐱� = �1
0� →  𝒜𝒜(𝐱𝐱�) = �1

0� 

𝐲𝐲� = �0
1� →  𝒜𝒜(𝐲𝐲�) = �0

0� 

Therefore, the associated matrix is: 

 𝐀𝐀 = �1 0
0 0� 

And any vector lands in the x-axis: 

𝒜𝒜(𝐯𝐯) = 𝐀𝐀𝐯𝐯 = �1 0
0 0� �

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = �𝑣𝑣𝑥𝑥0 � 

7) Consider the projection of vectors into the line 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐. Is it a linear transformation? If so, 
write down the associated matrix. 

A projection into the line 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 is a vector transformation, but is it a linear vector 
transformation? It will be a LINEAR transformation, and therefore can be represented by a matrix, 
only if 𝒜𝒜(𝜆𝜆𝐯𝐯) = 𝜆𝜆𝒜𝒜(𝐯𝐯) for any value of 𝜆𝜆. This includes 𝜆𝜆 = 0 which gives 𝒜𝒜(𝟎𝟎) = 𝟎𝟎. Every linear 
transformation must map 0 to 0, by definition of linearity. Therefore projection into 𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑐𝑐 is 
not a linear transformation unless the line crosses the origin: i.e., 𝑐𝑐 = 0, because otherwise, (0,0) 
would not be projected onto (0,0). So we will assume 𝑐𝑐 = 0 as a necessary condition. 

We are interested on the linear transformation which projects 2-D space into the line 𝑦𝑦 = 𝑚𝑚𝑥𝑥. The 
projection 𝐩𝐩 =  𝒜𝒜(𝐯𝐯), of a vector 𝐯𝐯 into a direction given by the unit vector 𝐮𝐮� is given by 𝐩𝐩 = 〈𝐯𝐯,𝐮𝐮�〉𝐮𝐮�. 

In the line 𝑦𝑦 = 𝑚𝑚𝑥𝑥, we know that 𝑚𝑚 represents the gradient, so when 𝑥𝑥 increases by 1, 𝑦𝑦 increases by 

𝑚𝑚. Therefore, the unit vector 𝐮𝐮� can be obtained as 𝐮𝐮� = (1,𝑚𝑚)
|(1,𝑚𝑚)| = 1

√1+𝑚𝑚2 
�1
𝑚𝑚�. 

We can now apply the projection to each unit vector: 
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𝐱𝐱� = �1
0� →  𝒜𝒜(𝐱𝐱�) = 〈𝐱𝐱�,𝐮𝐮�〉𝐮𝐮� = 〈�1

0� ,
1

√1 + 𝑚𝑚2 
�1
𝑚𝑚�〉  

1
√1 + 𝑚𝑚2 

�1
𝑚𝑚� =

1
1 + 𝑚𝑚2 �

1
𝑚𝑚� 

𝐲𝐲� = �0
1� → 𝒜𝒜(𝐲𝐲�) = 〈𝐲𝐲�,𝐮𝐮�〉𝐮𝐮� = 〈�0

1� ,
1

√1 + 𝑚𝑚2 
�1
𝑚𝑚�〉  

1
√1 + 𝑚𝑚2 

�1
𝑚𝑚� =

𝑚𝑚
1 + 𝑚𝑚2 �

1
𝑚𝑚� 

Therefore, the associated matrix is, as a function of 𝑚𝑚: 

 𝐀𝐀(𝑚𝑚) = 1
1+𝑚𝑚2 �

1 𝑚𝑚
𝑚𝑚 𝑚𝑚2� 

And any vector lands in the 𝑦𝑦 = 𝑚𝑚𝑥𝑥 line: 

𝒜𝒜(𝐯𝐯) = 𝐀𝐀𝐯𝐯 =
1

1 + 𝑚𝑚2 �
1 𝑚𝑚
𝑚𝑚 𝑚𝑚2��

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� =

1
1 + 𝑚𝑚2 �

𝑣𝑣𝑥𝑥 + 𝑚𝑚𝑣𝑣𝑦𝑦
𝑚𝑚𝑣𝑣𝑥𝑥 + 𝑚𝑚2𝑣𝑣𝑦𝑦

� =
𝑣𝑣𝑥𝑥 + 𝑚𝑚𝑣𝑣𝑦𝑦

1 + 𝑚𝑚2 𝐱𝐱� +
𝑚𝑚𝑣𝑣𝑥𝑥 + 𝑚𝑚2𝑣𝑣𝑦𝑦

1 +𝑚𝑚2 𝐲𝐲� 

Interestingly, notice that when 𝑚𝑚 = 0, the matrix becomes 𝐀𝐀(0) = �1 0
0 0� which corresponds to the 

projection into the x-axis. 

Interestingly, 𝐀𝐀(∞) = �0 0
0 1� if properly performing the limit 𝑚𝑚 → ∞, and this is indeed the matrix 

which corresponds to a projection into the y-axis. 
 

ROTATION IN 3D 

8) Write down the matrix associated with an arbitrary 𝜃𝜃𝑦𝑦-degree rotation around the y axis. The 
main difficulty in this problem is to get the signs correct (these signs are all an artificial 
convention but must be consistent. The convention is to use the right-hand rule to define the 
sign of 𝜃𝜃𝑦𝑦 according to whether the thumb points along +𝑦𝑦 or −𝑦𝑦 when the other fingers move 
in the direction of the rotation). Suggestion: draw a diagram. 

Solution: 

Draw the 3 unit vectors (remembering that x-y-z form a right-handed triplet such that 𝐱𝐱� × 𝐲𝐲� = 𝐳𝐳�) and 
then draw their transformed version. Next consider a rotation with 𝜃𝜃 > 0 which using the right hand 
rule results in the thumb pointing along the positive 𝑦𝑦 direction.  
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Then use trigonometry to write down the transformed version of the three unit vectors: 

    𝐱𝐱� = �
1
0
0
� →  𝒜𝒜(𝐱𝐱�) = �

cos𝜃𝜃
0

− sin𝜃𝜃
� 

    𝐲𝐲� = �
0
1
0
� →  𝒜𝒜(𝐲𝐲�) = �

0
1
0
� 

    𝐳𝐳� = �
0
0
1
� →  𝒜𝒜(𝐳𝐳�) = �

sin𝜃𝜃
0

cos𝜃𝜃
� 

So the rotation matrix in 3D around the y-axis is given by (this matrix is used often in different 
mathematical contexts and usually named as 𝐑𝐑𝑦𝑦): 

𝐑𝐑𝑦𝑦(𝜃𝜃) = �
cos𝜃𝜃 0 sin𝜃𝜃

0 1 0
− sin𝜃𝜃 0 cos𝜃𝜃

�. 

You should be able to find the rotation matrices for rotations around the other two axes. 

 
PROJECTION IN 3D 

9) Write down the matrix whose associated linear transformation projects all of 3-D space into the 
plane given as Π = span{𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐}, with 𝐞𝐞𝟏𝟏 = (0,1,0)𝑇𝑇 and 𝐞𝐞𝟐𝟐 = (1,0,1)𝑇𝑇 

The projection 𝐩𝐩 of a vector 𝐯𝐯 to a subspace span{𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐} can be written using a simple recipe if the 
basis of the subspace is orthogonal. In this case, 〈𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐〉 = 0, the basis is orthogonal, so we can apply 
the simple recipe:  

𝐩𝐩 =
〈𝐯𝐯, 𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉

𝐞𝐞𝟏𝟏 +
〈𝐯𝐯,𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐,𝐞𝐞𝟐𝟐〉

𝐞𝐞𝟐𝟐  

 
So, applying this projection (𝐞𝐞𝟏𝟏 = (0,1,0)𝑇𝑇 and 𝐞𝐞𝟐𝟐 = (1,0,1)𝑇𝑇) to the unit vectors: 

𝐱𝐱� = �
1
0
0
� →  𝒜𝒜(𝐱𝐱�) =

〈𝐱𝐱�, 𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉

𝐞𝐞𝟏𝟏 +
〈𝐱𝐱�, 𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐,𝐞𝐞𝟐𝟐〉

𝐞𝐞𝟐𝟐 = 0 +
1
2
�

1
0
1
� 

𝐲𝐲� = �
0
1
0
� →  𝒜𝒜(𝐲𝐲�) =

〈𝐲𝐲�,𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉

𝐞𝐞𝟏𝟏 +
〈𝐲𝐲�, 𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐, 𝐞𝐞𝟐𝟐〉

𝐞𝐞𝟐𝟐 = 1�
0
1
0
� + 0 

𝐳𝐳� = �
0
0
1
� → 𝒜𝒜(𝐳𝐳�) =

〈𝐳𝐳�, 𝐞𝐞𝟏𝟏〉
〈𝐞𝐞𝟏𝟏, 𝐞𝐞𝟏𝟏〉

𝐞𝐞𝟏𝟏 +
〈𝐳𝐳�, 𝐞𝐞𝟐𝟐〉
〈𝐞𝐞𝟐𝟐,𝐞𝐞𝟐𝟐〉

𝐞𝐞𝟐𝟐 = 0 +
1
2
�

1
0
1
� 

Therefore, the associated matrix is 

𝐀𝐀 =
1
2
�

1 0 1
0 2 0
1 0 1

� 

A quick check that this is correct can be to test how the matrix acts on vectors 𝐞𝐞𝟏𝟏 and 𝐞𝐞𝟐𝟐, which, being 
in the plane itself, should be unchanged by the projection. Indeed 𝐀𝐀𝐞𝐞𝟏𝟏 = 𝐞𝐞𝟏𝟏 and 𝐀𝐀𝐞𝐞𝟐𝟐 = 𝐞𝐞𝟐𝟐. 
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10) Write down the matrix whose associated linear transformation projects all 3-D space into the 
plane given by 𝑥𝑥 + 𝑦𝑦 = 0. 

This time, the plane is given in terms of its normal vector in the form 𝑛𝑛𝑥𝑥𝑥𝑥 + 𝑛𝑛𝑦𝑦𝑦𝑦 + 𝑛𝑛𝑧𝑧𝑧𝑧 = 0, so we 
know that 𝐧𝐧 = (1,1,0). 
As we know from the previous problem, the projection of a vector 𝐯𝐯 to a subspace span{𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐} can 
be written using a simple recipe if the basis of the subspace is orthogonal. A possible method would 
be therefore to find two orthogonal vectors within the plane and apply the method in the previous 
problem. However, since we have the normal vector to the plane, and we are working in 3D space, 
there is an easier method. See the figure:  

 
 
Clearly, any vector 𝐯𝐯 can be written as a vector within the plane (subspace) which is the projection 

𝒜𝒜(𝐯𝐯), added to a vector parallel to 𝐧𝐧, so 𝐯𝐯 = 𝒜𝒜(𝐯𝐯) + 〈𝐯𝐯,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧, where the second term parallel to 𝐧𝐧 is 

simply the projection of 𝐯𝐯 on the direction of 𝐧𝐧. Therefore, 𝒜𝒜(𝐯𝐯) is given by subtracting this 
component to 𝐯𝐯, such that: 

𝒜𝒜(𝐯𝐯) = 𝐯𝐯 −
⟨𝐯𝐯,𝐧𝐧⟩
⟨𝐧𝐧,𝐧𝐧⟩

𝐧𝐧 

So, applying this projection to the unit vectors: 

𝐱𝐱� = �
1
0
0
� →  𝒜𝒜(𝐱𝐱�) = 𝐱𝐱� −

〈𝐱𝐱�,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 = �
1
0
0
� −

1 + 0 + 0
1 + 1 + 0

�
1
1
0
� =

1
2
�

1
−1
0
� 

𝐲𝐲� = �
0
1
0
� →  𝒜𝒜(𝐲𝐲�) = 𝐲𝐲� −

〈𝐲𝐲�,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 = �
0
1
0
� −

0 + 1 + 0
1 + 1 + 0

�
1
1
0
� =

1
2
�
−1
1
0
� 

𝐳𝐳� = �
0
0
1
� →  𝒜𝒜(𝐳𝐳�) = 𝐳𝐳� −

〈𝐳𝐳�,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 = �
0
0
1
� −

0 + 0 + 0
1 + 1 + 0

�
1
1
0
� = �

0
0
1
� 

Therefore, the associated matrix is 

𝐀𝐀 =
1
2
�

1 −1 0
−1 1 0
0 0 2

� 

A quick check that this is correct can be to test how the matrix acts on vector 𝐧𝐧. Indeed 𝐀𝐀𝐧𝐧 = 𝟎𝟎. 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.1 (10) 

MIRROR SYMMETRY IN 3D 

11) Write down the matrix whose associated linear transformation performs a mirror-symmetry 
operation on 3-D space, with the mirror-plane given by 𝑥𝑥 + 𝑦𝑦 = 0. 

The normal vector of this mirror plane (𝑛𝑛𝑥𝑥𝑥𝑥 + 𝑛𝑛𝑦𝑦𝑦𝑦 + 𝑛𝑛𝑧𝑧𝑧𝑧 = 𝑑𝑑) is given by 𝐧𝐧 = (1,1,0). 

Mirror symmetry is a transformation which flips the sign of the component of every vector 𝐯𝐯 along the 
direction normal to the mirror, 𝐧𝐧. 

 

That is, if 𝐩𝐩 is the projection of a vector 𝐯𝐯 on the mirror plane, then that component remains 
unchanged by the linear transformation, but the component normal to the mirror plane is flipped: 

𝐯𝐯 = 𝐩𝐩 +
〈𝐯𝐯,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 →   𝒜𝒜(𝐯𝐯) = 𝐩𝐩 −
〈𝐯𝐯,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 

Therefore: 

𝒜𝒜(𝐯𝐯) = 𝐯𝐯 − 2
⟨𝐯𝐯,𝐧𝐧⟩
⟨𝐧𝐧,𝐧𝐧⟩

𝐧𝐧 

So, applying this mirror-symmetry to the unit vectors: 

𝐱𝐱� = �
1
0
0
� →  𝒜𝒜(𝐱𝐱�) = 𝐱𝐱� − 2

〈𝐱𝐱�,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 = �
1
0
0
� − 2

1 + 0 + 0
1 + 1 + 0

�
1
1
0
� = �

0
−1
0
� 

𝐲𝐲� = �
0
1
0
� →  𝒜𝒜(𝐲𝐲�) = 𝐲𝐲� − 2

〈𝐲𝐲�,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 = �
0
1
0
� − 2

0 + 1 + 0
1 + 1 + 0

�
1
1
0
� = �

−1
0
0
� 

𝐳𝐳� = �
0
0
1
� →  𝒜𝒜(𝐳𝐳�) = 𝐳𝐳� − 2

〈𝐳𝐳�,𝐧𝐧〉
〈𝐧𝐧,𝐧𝐧〉

𝐧𝐧 = �
0
0
1
� − 2

0 + 0 + 0
1 + 1 + 0

�
1
1
0
� = �

0
0
1
� 

Therefore, the associated matrix is 

𝐀𝐀 = �
0 −1 0
−1 0 0
0 0 1

� 

A quick check that this is correct can be to test how the matrix acts on vector 𝐧𝐧. Indeed 𝐀𝐀𝐧𝐧 = −𝐧𝐧. 
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ANISOTROPIC SCALING IN NON-ORTHOGONAL DIRECTIONS (2D) 

12) Write down the matrix whose associated linear transformation scales space in the direction 
𝐯𝐯1 = (2,1) by a factor of 2, and scales space in the direction 𝐯𝐯2 = (1,2) by a factor of 1/2.  

Solution:  

In order to find the matrix associated with this transformation, we need to find how this 
transformation affects each of the unit vectors.  

How are we going to do this? 

First, let’s think how the transformation affects ANY vector 𝐚𝐚 → 𝒜𝒜(𝐚𝐚). 

The transformation scales space in the direction 𝐯𝐯1 = (2,1) by a factor of 2, and scales space in the 
direction 𝐯𝐯2 = (1,2) by a factor of ½, therefore, remembering the linearity of the operation, we can 
write any vector as a linear combination of 𝐯𝐯1 and 𝐯𝐯2, and then scale them appropriately: 

𝐚𝐚 = 𝑎𝑎1𝐯𝐯𝟏𝟏 + 𝑎𝑎2𝐯𝐯𝟐𝟐
         𝒜𝒜         
�⎯⎯⎯⎯⎯⎯�  𝒜𝒜(𝐚𝐚) = 𝑎𝑎1𝒜𝒜(𝐯𝐯𝟏𝟏) + 𝑎𝑎2𝒜𝒜(𝐯𝐯𝟐𝟐) = 𝑎𝑎1(2𝐯𝐯𝟏𝟏) + 𝑎𝑎2 �

1
2
𝐯𝐯𝟐𝟐� 

If we want to do this with the unit vectors, we need to write each of the unit vectors as a linear 
combination of the two vectors 𝐯𝐯1 and 𝐯𝐯2. This is easy if vectors 𝐯𝐯1 and 𝐯𝐯2 are orthogonal, however 
〈𝐯𝐯1,𝐯𝐯2〉 = 2 + 2 = 4 ≠ 0, so they are not orthogonal. We have to find the components in the usual 
way, solving a system of equations. 

 

𝐱𝐱� = �1
0� = 𝑎𝑎1𝐯𝐯1 + 𝑎𝑎2𝐯𝐯2 = 𝑎𝑎1 �

2
1� + 𝑎𝑎2 �

1
2� 

Writing the equations component by component: 

�2𝑎𝑎1 + 𝑎𝑎2 = 1
𝑎𝑎1 + 2𝑎𝑎2 = 0   (𝐸𝐸𝐸𝐸. 1)

(𝐸𝐸𝐸𝐸. 2) 

(1)-2(2) →  −3𝑎𝑎2 = 1 → 𝑎𝑎2 = −1
3
 

Into (2) → 𝑎𝑎1 = −2𝑎𝑎2 = 2
3
 

So 𝐱𝐱� = 2
3
�2

1� −
1
3
�1

2� 

Repeating the procedure with 𝐲𝐲�: 

𝐲𝐲� = �0
1� = 𝑎𝑎1𝐯𝐯1 + 𝑎𝑎2𝐯𝐯2 = 𝑎𝑎1 �

2
1� + 𝑎𝑎2 �

1
2� 

Writing the equations component by component: 

�2𝑎𝑎1 + 𝑎𝑎2 = 0
𝑎𝑎1 + 2𝑎𝑎2 = 1   (𝐸𝐸𝐸𝐸. 1)

(𝐸𝐸𝐸𝐸. 2) 

(1)-2(2) →  −3𝑎𝑎2𝑥𝑥 = −2 → 𝑎𝑎2𝑥𝑥 = 2
3
 

Into (2) → 𝑎𝑎1𝑥𝑥 = 1 − 2𝑎𝑎2𝑥𝑥 = −1
3

 

So 𝐲𝐲� = −1
3
�2

1� + 2
3
�1

2� 
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Once we know how to write 𝐱𝐱� and 𝐲𝐲� in terms of those two special directions, we can apply the 
transformation to each component separately.  

𝐱𝐱� = �1
0� =

2
3
𝐯𝐯𝟏𝟏 −

1
3
𝐯𝐯𝟐𝟐

         𝒜𝒜         
�⎯⎯⎯⎯⎯⎯�  𝒜𝒜(𝐱𝐱�) =

2
3
𝒜𝒜(𝐯𝐯𝟏𝟏)−

1
3
𝒜𝒜(𝐯𝐯𝟐𝟐) 

=
2
3

(2𝐯𝐯𝟏𝟏)−
1
3
�

1
2
𝐯𝐯𝟐𝟐� =

2
3

2 �2
1� −

1
3

1
2
�1

2� = �5/2
1 � 

𝐲𝐲� = �0
1� = −

1
3
𝐯𝐯𝟏𝟏 +

2
3
𝐯𝐯𝟐𝟐

         𝒜𝒜         
�⎯⎯⎯⎯⎯⎯�  𝒜𝒜(𝐲𝐲�) = −

1
3
𝒜𝒜(𝐯𝐯𝟏𝟏) +

2
3
𝒜𝒜(𝐯𝐯𝟐𝟐) = �−

1
3
�2 �2

1� +
2
3

1
2
�1

2� = �−1
0 � 

Therefore, the associated matrix is: 

 𝐀𝐀 = �5/2 −1
1 0 � 

You can easily check that 𝐀𝐀𝐯𝐯1 = 2𝐯𝐯1 and that 𝐀𝐀𝐯𝐯2 = 1
2
𝐯𝐯2 as required. 

𝐀𝐀𝐯𝐯1 = �5/2 −1
1 0 � �2

1� = �4
2�        and       𝐀𝐀𝐯𝐯2 = �5/2 −1

1 0 � �1
2� = �1/2

1 �         

Demonstrate using Geogebra. Point out we would never guess those special directions by looking at 
the transformation alone. 
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C. LINEAR TRANSFORMATIONS IN N-DIMENSIONAL SPACES 

Let’s not limit ourselves to geometrical spaces in {𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�}.  

Linear transformations, and therefore matrices, act on any possible (finite dimensional) vector space. 

Vector spaces can be many different things. A matrix could represent a conversion from polynomials 
to colours in {R,G,B} space, for example. 

 

13) Consider the vector space of polynomials of degree equal or smaller than 4, using the basis 
{1, 𝑥𝑥, 𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4}. Answer the following: 

a) Is the derivative of a polynomial d
d𝑥𝑥

(𝑝𝑝(𝑥𝑥)) a linear transformation of 𝑝𝑝(𝑥𝑥) in this vector space? 
b) If so, obtain the matrix which represents the derivative. 

Solution: 

a) The definition of a linear transformation is the following. For any two vectors 𝐮𝐮 and 𝐯𝐯, and any two 
coefficients 𝜆𝜆 and 𝜇𝜇, the transformation 𝒜𝒜 fulfils: 

𝒜𝒜(𝜆𝜆𝐮𝐮 + 𝜇𝜇𝐯𝐯) = 𝜆𝜆𝒜𝒜(𝐮𝐮) + 𝜇𝜇𝒜𝒜(𝐯𝐯) 

We know that polynomials can be interpreted as vectors, so exactly the same definition for linear 
transformation applies. A transformation of polynomials is linear if and only if: 

𝒜𝒜[𝜆𝜆 𝑝𝑝(𝑥𝑥) + 𝜇𝜇 𝐸𝐸(𝑥𝑥)] = 𝜆𝜆𝒜𝒜[𝑝𝑝(𝑥𝑥)] + 𝜇𝜇𝒜𝒜[𝐸𝐸(𝑥𝑥)] 

For any two polynomials 𝑝𝑝(𝑥𝑥) and 𝐸𝐸(𝑥𝑥). Does the derivative fulfil this condition? Indeed: 

d
d𝑥𝑥

[𝜆𝜆 𝑝𝑝(𝑥𝑥) + 𝜇𝜇 𝐸𝐸(𝑥𝑥)] = 𝜆𝜆
d

d𝑥𝑥
[𝑝𝑝(𝑥𝑥)] + 𝜇𝜇

d
d𝑥𝑥

[𝐸𝐸(𝑥𝑥)] 

is fulfilled. Therefore, the derivative of a polynomial IS a linear transformation (in fact, the above 
equation works for any function, not only polynomials, so the derivative is a linear transformation in 
general)! 

b) If the derivative is a linear transformation acting on a finite-dimensional space, then it necessarily 
has a matrix representation! To find the matrix, we need to have a clearly defined basis for the input 
and output space. In this case, the questions asks us to use the basis {1,𝑥𝑥, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4}. 

To find the matrix, we need to apply the linear transformation to each of the basis elements: 

1 → 𝒜𝒜(1) = d
d𝑥𝑥

[1] = 0 whose vector representation is (0,0,0,0,0)𝑇𝑇 

𝑥𝑥 → 𝒜𝒜(𝑥𝑥) = d
d𝑥𝑥

[𝑥𝑥] = 1 whose vector representation is (1,0,0,0,0)𝑇𝑇 

𝑥𝑥2 → 𝒜𝒜(𝑥𝑥2) = d
d𝑥𝑥

[𝑥𝑥2] = 2𝑥𝑥 whose vector representation is (0,2,0,0,0)𝑇𝑇 

𝑥𝑥3 → 𝒜𝒜(𝑥𝑥3) = d
d𝑥𝑥

[𝑥𝑥3] = 3𝑥𝑥2 whose vector representation is (0,0,3,0,0)𝑇𝑇 

𝑥𝑥4 → 𝒜𝒜(𝑥𝑥4) = d
d𝑥𝑥

[𝑥𝑥4] = 4𝑥𝑥3 whose vector representation is (0,0,0,4,0)𝑇𝑇 
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Therefore, the associated matrix is obtained by placing the different outputs as the columns in the 
grid: 

 𝐀𝐀 =

⎝

⎜
⎛

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4
0 0 0 0 0⎠

⎟
⎞

 

Notice that the last row is all zeroes. That is because the derivative of a polynomial of degree 4 is 
always a polynomial of, at most, degree 3. We could therefore interpret the derivative as acting on 
the space of polynomials of degree 4 or less, and placing the output into the space of polynomials of 
degree 3 or less. This can be represented by a non-square matrix, whose number of columns is equal 
to the dimension of the input space, and whose number of rows is equal to the dimension of the 
output space. In this case it is a 𝟒𝟒 × 𝟓𝟓 matrix. 

𝐀𝐀′ = �

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

� 

 

 

Indeed, the matrix-vector multiplication must fulfil the following conditions on the number of 
dimensions of the input and output vectors. The dimension of the input vector must be equal to the 
number of columns of the matrix (5 dimensional input). The dimensions of the output is equal to the 
number of rows of the matrix (4 dimensional output). 

 

 

In this way, a matrix can be any size 𝑀𝑀 × 𝑁𝑁, converting an N dimensional input into an M dimensional 
output. 
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14) Linear RGB colorspace uses the three components (𝑅𝑅,𝐺𝐺,𝐵𝐵) to determine the intensity of each 
coloured subpixel. However, sometimes we want an image to be monochromatic (black & white 
& shades of grey) and therefore each pixel should be defined by its intensity, a single value (𝑌𝑌).  

When converting a colour image into a grayscale image, we could just project each vector 
(R,G,B) into the line of grayscale 𝜆𝜆(1,1,1), however this would ignore the fact that the different 
colours are perceived with different brightness. Scientists and psychologists determined that a 
pure blue colour is perceived as less bright than a pure green colour (for equal light intensity). 
This is related to biology of the eye and perception. Therefore, the RGB values should not 
contribute equally to the luminosity for the best result. The following international standard is 
given for conversion of RGB to luminosity values. 

𝑌𝑌 = 0.2126𝑅𝑅 + 0.7152𝐺𝐺 + 0.0722𝐵𝐵 
Find the matrix associated to this linear transformation. 
 

Solution: 
 
This linear transformation converts a three-dimensional space (RGB) into a one-dimensional space (Y). 
Therefore, the matrix must have 1 row and 3 columns. Each column must be the luminosity Y 
corresponding to each of the basis vectors RGB. The matrix is simply given as: 

𝐀𝐀 = (0.2126 0.7152 0.0722) 
So that, indeed: 

𝑌𝑌 = 𝐀𝐀𝐀𝐀 = (0.2126 0.7152 0.0722)�
𝑅𝑅
𝐺𝐺
𝐵𝐵
� = 0.2126𝑅𝑅 + 0.7152𝐺𝐺 + 0.0722𝐵𝐵 

Notice something that is often used: An 𝑀𝑀 × 1 matrix is equivalent to the dot product operation for 
vectors of dimension 𝑀𝑀. In fact, some books denote the dot product of 𝐮𝐮 and 𝐯𝐯 as the matrix-vector 
multiplication 𝐮𝐮𝑇𝑇𝐯𝐯 where, if one wishes, we can see the transposed vector 𝐮𝐮𝑇𝑇 as a matrix. 
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D. BASIC MATRIX OPERATIONS 

ADDITION OF MATRICES 

 

This corresponds to a linear transformation 𝒞𝒞(𝐯𝐯) = 𝒜𝒜(𝐯𝐯) + ℬ(𝐯𝐯). This only makes sense if the input 
and output vector spaces have the same dimension, i.e. matrices have same size. 

15) Find �1 𝑎𝑎
0 2� + �0 𝜋𝜋

𝑎𝑎 1� 

Solution: Simply add element by element: �1 𝑎𝑎
0 2� + �0 𝜋𝜋

𝑎𝑎 1� = �1 𝑎𝑎 + 𝜋𝜋
𝑎𝑎 3 � 

16) Find �1 𝑎𝑎
0 2� + �0 1 𝜋𝜋

𝑎𝑎 2 1� 

Solution: They cannot be added because they have different size 

 

MULTIPLICATION OF MATRICES 𝐀𝐀𝐀𝐀  

The matrix multiplication 𝐂𝐂 = 𝐀𝐀𝐀𝐀 corresponds to the nested transformation 𝒞𝒞(𝐯𝐯) = ℬ[𝒜𝒜(𝐯𝐯)]. 
Similarly to nested functions 𝑔𝑔[𝑓𝑓(𝑥𝑥)], first apply 𝒜𝒜 and THEN apply ℬ. 
Dimensions of vector spaces must match throughout the “chain”. 

 

• Consider a nested linear transformation 𝒞𝒞(𝐯𝐯) = ℬ[𝒜𝒜(𝐯𝐯)]. 

 

 
1 × 1 dimensional case: 

Linear transformations are given by good old multiplication by a scalar: 
 Transformation 𝒜𝒜(𝑥𝑥) = 𝑎𝑎𝑥𝑥 

Transformation ℬ(𝑥𝑥) = 𝑏𝑏𝑥𝑥 
Nested transformation 𝒞𝒞(𝑥𝑥) = ℬ[𝒜𝒜(𝑥𝑥)] = 𝑏𝑏𝑎𝑎𝑥𝑥 = 𝑐𝑐𝑥𝑥     with    𝑐𝑐 = 𝑏𝑏𝑎𝑎 
 

So 1 × 1 dimensional matrices are multiplied by simply multiplying its single elements together. 
What happens to general-sized matrices? Things get interesting and beautiful. 

Addition of matrices 𝐀𝐀 + 𝐀𝐀 : add each corresponding element (matrices must have same size) 
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General dimensional case. Write the input vector 𝐯𝐯 as a combination of the input basis vectors: 

ℬ[𝒜𝒜(𝐯𝐯)] = ℬ[𝒜𝒜(𝑎𝑎1𝐞𝐞1 + 𝑎𝑎2𝐞𝐞2 + ⋯+ 𝑎𝑎𝑁𝑁𝐞𝐞𝑁𝑁)] 

Thanks to the linearity of the transformations 𝒜𝒜 and ℬ, we can rewrite this as: 

ℬ[𝒜𝒜(𝐯𝐯)] = 𝑎𝑎1ℬ[𝒜𝒜(𝐞𝐞1)] + 𝑎𝑎2ℬ[𝒜𝒜(𝐞𝐞2)] + ⋯+ 𝑎𝑎𝑁𝑁ℬ[𝒜𝒜(𝐞𝐞𝑁𝑁)] 
𝒞𝒞(𝐯𝐯) = 𝑎𝑎1𝒞𝒞(𝐞𝐞1) + 𝑎𝑎2𝒞𝒞(𝐞𝐞2) + ⋯+ 𝑎𝑎𝑁𝑁𝒞𝒞(𝐞𝐞𝑁𝑁) 

Therefore, the i-th column of 𝐂𝐂 is given by the nested transformation applied to each of the input basis 
vectors: 

𝐂𝐂 = �
⋮ ⋮  ⋮

ℬ[𝒜𝒜(𝐞𝐞1)] ℬ[𝒜𝒜(𝐞𝐞2)] … ℬ[𝒜𝒜(𝐞𝐞𝑁𝑁)]
⋮ ⋮  ⋮

� 

This matrix 𝐂𝐂 can be defined to be the product 𝐂𝐂 = 𝐀𝐀𝐀𝐀, where 𝐀𝐀 and 𝐀𝐀 represent the matrices for the 
individual transformations. 

Remember that  𝒜𝒜(𝐞𝐞𝑖𝑖) is nothing else than the columns of matrix 𝐀𝐀. 

 
Therefore, each column of matrix 𝐂𝐂 = 𝐀𝐀𝐀𝐀 corresponds to the matrix 𝐀𝐀 multiplied with each of the 
columns of matrix 𝐀𝐀. 
 

 
 

17) Calculate the matrix multiplication �1 𝑎𝑎
0 2� �

0 𝜋𝜋
𝑎𝑎 1� 

Solution: Apply matrix multiplication �1 𝑎𝑎
0 2� to each of the columns of �0 𝜋𝜋

𝑎𝑎 1� 

First column is �1 𝑎𝑎
0 2� �

0
𝑎𝑎� = �𝑎𝑎

2

2𝑎𝑎
� 

Second column is �1 𝑎𝑎
0 2� �

𝜋𝜋
1� = �𝜋𝜋 + 𝑎𝑎

2 � 

Therefore: �1 𝑎𝑎
0 2� �

0 𝜋𝜋
𝑎𝑎 1� = �𝑎𝑎

2 𝜋𝜋 + 𝑎𝑎
2𝑎𝑎 2

� 

The multiplication can be done directly with the same trick we use for matrix-vector multiplication, 
placing the second matrix shifted upwards, and looking at the matrix-shaped space at the bottom right 
corner, where the output goes.  

 �0        𝜋𝜋
𝑎𝑎        1�

�1 𝑎𝑎
0 2� �𝑎𝑎

2 𝜋𝜋 + 𝑎𝑎
2𝑎𝑎 2

�
 

Each element of the output is the dot product of the corresponding row and column in the input 
matrices being multiplied. This has the added advantage of being an in-built dimension mismatch 
check. 

Multiplication of matrices 𝐀𝐀𝐀𝐀 : apply matrix multiplication 𝐀𝐀 to each of the columns of 𝐀𝐀 
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18) Calculate the matrix multiplication �

1 𝑎𝑎
0 2
1 1
𝑘𝑘 0

��0 𝜋𝜋 √2
𝑎𝑎 1 0

� 

Even though the matrices have different sizes, we can still apply the matrix 𝐀𝐀 to each of the columns 
of matrix 𝐀𝐀 (because the dimensions are compatible for matrix-vector mutiplication). Therefore, we 
can obtain: 

�

1 𝑎𝑎
0 2
1 1
𝑘𝑘 0

��0 𝜋𝜋 √2
𝑎𝑎 1 0

� =

⎝

⎛
𝑎𝑎2 𝜋𝜋 + 𝑎𝑎 √2
2𝑎𝑎 2 0
𝑎𝑎 𝜋𝜋 + 1 √2
0 𝑘𝑘𝜋𝜋 √2𝑘𝑘⎠

⎞ 

Think about how each matrix modifies the dimensions of its input and output spaces. Remember that 
an 𝑀𝑀 × 𝑁𝑁 matrix converts an N dimensional space into an M dimensional space. Dimensions match 
throughout the chain, like this: 

 

 

19) Calculate the matrix multiplication �1 𝑎𝑎 2
0 2 1� �

0 𝜋𝜋
𝑎𝑎 1� 

Solution: 

This matrix multiplication cannot be done, because dimensions do not match! 𝐀𝐀 converts 2D to 2D, 
while 𝐀𝐀 converts 3D to 2D. They cannot be concatenated as ℬ[𝒜𝒜()]. 

Note that, using the visual trick for multiplication of matrices of shifting the second matrix upwards 
and filling the result into the empty gap, we immediately see that something is wrong because we 
cannot do the dot product. Dimensions do not match. The check of dimensions is built into the 
algorithm. 

 �0  𝜋𝜋
𝑎𝑎   1�

�1 𝑎𝑎 2
0 2 1� �  

⋅ ⋅
⋅ ⋅  �

 

 

However, they COULD be concatenated in the reverse order! 𝒜𝒜[ℬ()]. 

Indeed: �0 𝜋𝜋
𝑎𝑎 1� �

1 𝑎𝑎 2
0 2 1� = �0 2𝜋𝜋 𝜋𝜋

𝑎𝑎 𝑎𝑎2 + 2 2𝑎𝑎 + 1� 

 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.1 (19) 

PROPERTIES OF MATRIX MULTIPLICATION: 

 

This is fascinating. It tells us that while multiplication of scalars is commutative, when we naturally 
extend the concept into higher number of dimensions, it ceases to be commutative in general. 

This is deeply related to Heisenberg’s uncertainty principle in quantum mechanics. 

The rest of the properties of addition and multiplication are identical to scalars,  
but remembering that multiplication on the left is in general different to multiplication on the right: 
   𝐀𝐀(𝐀𝐀 + 𝐂𝐂) = 𝐀𝐀𝐀𝐀 + 𝐀𝐀𝐂𝐂 
   (𝐀𝐀 + 𝐀𝐀)𝐂𝐂 = 𝐀𝐀𝐂𝐂 + 𝐀𝐀𝐂𝐂 
    𝜆𝜆(𝐀𝐀 + 𝐀𝐀) = 𝜆𝜆𝐀𝐀 + 𝜆𝜆𝐀𝐀 
  𝐀𝐀(𝐀𝐀𝐂𝐂) = (𝐀𝐀𝐀𝐀)𝐂𝐂 = 𝐀𝐀𝐀𝐀𝐂𝐂 
  𝐀𝐀𝜆𝜆𝐀𝐀 = 𝜆𝜆𝐀𝐀𝐀𝐀 (the scalars can always be moved as a common factor) 

When not remembering what is and is not allowed with matrices: think of everything you would be 
allowed to do with scalars. Everything is valid with matrices EXCEPT you always need to keep track 
whether you multiply on the left, or multiply on the right, and they cannot be interchanged. 

 

 

EXAMPLES OF NON-COMMUTATIVE VS. COMMUTATIVE NESTED LINEAR TRANSFORMATIONS: 

20) Let’s check that matrix multiplication is non-commutative. Consider the linear transformations 
𝒜𝒜 = projection into the x-axis, and ℬ = rotation by 90 degrees anticlockwise. Both 
transformations were associated with a matrix in previous examples as: 

𝐀𝐀 = �1 0
0 0� and 𝐀𝐀 = �0 −1

1 0 �. 

 
a) Consider the transformations visually. Why are they non-commutative? 
b) Consider the transformations mathematically. Calculate the nested transformation 

matrix 𝐀𝐀𝐀𝐀 and 𝐀𝐀𝐀𝐀. Check they are not equal. 

Solution: 

a) Visually it is evident that the transformations are not commutative. Projecting into the x axis, and 
THEN rotating 90 degrees, will mean that all output vectors lie along the y axis. 

Rotating by 90 degrees, and THEN projecting into the x-axis, will mean that all output vectors lie along 
the x-axis. 

Both transformations are clearly a different transformation, and so will be represented with a different 
matrix. 

b) 𝐀𝐀𝐀𝐀 = �1 0
0 0� �

0 −1
1 0 � = �0 −1

0 0 � corresponds to rotation (B) followed by projection (A). 

𝐀𝐀𝐀𝐀 = �0 −1
1 0 � �1 0

0 0� = �0 0
1 0� corresponds to projection (A) followed by rotation (B). 

Matrix multiplication is not commutative 𝐀𝐀𝐀𝐀 ≠ 𝐀𝐀𝐀𝐀 in general 

 

The identity matrix 𝐈𝐈 is the matrix version of the scalar 1. Its diagonal is 1’s, rest are 0’s. It does 
not transform vectors. Multiplying 𝐈𝐈 left or right leaves a matrix unchanged: 𝐀𝐀𝐈𝐈 = 𝐈𝐈𝐀𝐀 = 𝐀𝐀. 
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21) Consider a 90-degree clockwise rotation (𝒜𝒜) and a 45-degree anticlockwise rotation (ℬ). 
Interestingly, the order of the operations is not important in this case. Check that their matrices 
are commutative and result in a 45-degree clockwise rotation. 

Solution: 

𝐀𝐀 = �0 −1
1 0 � and 𝐀𝐀 = 1

√2
� 1 1
−1 1� (easily found with the method of previous sections) 

𝐀𝐀𝐀𝐀 = �0 −1
1 0 � 1

√2
� 1 1
−1 1� (matrix multiplication to concatenate the operations) 

(the scalars can always be moved as a common factor, as they act on ALL elements of the matrix, they 
are a global scaling) 

=
1
√2

�0 −1
1 0 � � 1 1

−1 1� =
1
√2

�1 −1
1 1 �. 

𝐀𝐀𝐀𝐀 =
1
√2

� 1 1
−1 1� �

0 −1
1 0 � =

1
√2

�1 −1
1 1 �. 

Same result! The transformation corresponds to the 45 degree rotation clockwise. 

This is a rare exception when two matrices give the same result regardless of their order of 
multiplication. These matrices are said to commute with each other. 

 

MATRIX TRANSPOSE AND MATRIX HERMITIAN CONJUGATE 

 

 

22) Find the transpose 𝐀𝐀T of the matrix 𝐀𝐀 = �3 1 2
0 4 1� 

Solution: 

First row becomes the first column. The second row becomes the second column 

𝐀𝐀T = �
3 0
1 4
2 1

� 

Think about it as a mirror symmetry across the main centre diagonal 

𝐀𝐀 = �3 1 2
0 4 1�  

 

 

Transpose of a matrix 𝐀𝐀T : swap rows by columns 

Properties: 

 (𝜆𝜆𝐀𝐀)T = 𝜆𝜆𝐀𝐀T 
 (𝐀𝐀𝐀𝐀)T = 𝐀𝐀T𝐀𝐀T (very careful with the order, it must be swapped!) 

 

 
A square matrix is called SYMMETRIC when it is equal to its transpose 
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(the symbol is called ‘dagger’ †). Note that the Hermitian inner product can be written as a matrix 
product: 

 
 

*Note: Above we used the version of Hermitian inner product which has linearity in the second 
argument, and conjugate linearity in the first, 〈𝐮𝐮|𝐯𝐯〉. If we wanted to use the version 〈𝐮𝐮, 𝐯𝐯〉 with 
linearity in the first argument, the expression is uglier: 〈𝐮𝐮, 𝐯𝐯〉 = 𝐮𝐮T𝐯𝐯∗  

 

23) Find the Hermitian conjugate 𝐀𝐀† of the matrix 𝐀𝐀 = � 1 2 3𝑖𝑖
1 + 𝑖𝑖 𝑖𝑖 0 � 

Solution: 

Do the transpose, and do the complex conjugate to each element: 

𝐀𝐀† = �
1 1 − 𝑖𝑖
2 −𝑖𝑖
−3𝑖𝑖 0

� 

 

 

 

 

  

Hermitian conjugate of a matrix: 

𝐀𝐀† = (𝐀𝐀∗)T – conjugate each element and transpose the matrix. 
 

 

〈𝐮𝐮|𝐯𝐯〉 ≝ 𝐮𝐮†𝐯𝐯        if 𝐮𝐮 and 𝐯𝐯 written in orthonormal basis 
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E. ORTHOGONAL AND UNITARY TRANSFORMATIONS 

UNITARY MATRICES 

A certain type of transformations have the special property that the length of the vectors is not 
changed by the transformation and that the angles between vectors are not changed by the 
transformation: those two statements can be compactly written as 〈𝐱𝐱|𝐲𝐲〉 = 〈𝐀𝐀𝐱𝐱|𝐀𝐀𝐲𝐲〉 for any vectors 
𝐱𝐱 and 𝐲𝐲 (including the possibility of 𝐱𝐱 = 𝐲𝐲). A matrix representing such transformation is called a 
unitary matrix.  

 

Examples include rotations, reflections, and combinations of both. 

We can use the assumption that the transformation does not change lengths to show the following: 

〈𝐱𝐱|𝐱𝐱〉 = 〈𝐀𝐀𝐱𝐱|𝐀𝐀𝐱𝐱〉 = (𝐀𝐀𝐱𝐱)†(𝐀𝐀𝐱𝐱) = 𝐱𝐱†𝐀𝐀†𝐀𝐀𝐱𝐱 

Comparing the leftmost and rightmost terms, we see that 𝐱𝐱†𝐀𝐀†𝐀𝐀𝐱𝐱 = 𝐱𝐱†𝐱𝐱, which means that the 
multiplication 𝐀𝐀†𝐀𝐀 = 𝐈𝐈 “cancels out”. This means that the Hermitian conjugate 𝐀𝐀† is equal to the 
inverse 𝐀𝐀−𝟏𝟏, a concept introduced formally in the next lesson. 

 

Also, if we write the matrix multiplication 𝐌𝐌 = 𝐀𝐀†𝐀𝐀 = 𝐈𝐈 element by element, the matrix elements of 
𝐌𝐌 will correspond to the inner product between every pair of column vectors 𝐚𝐚𝑖𝑖 in 𝐀𝐀, that is, 𝑀𝑀𝑖𝑖𝑖𝑖 =
�𝐚𝐚𝑖𝑖|𝐚𝐚𝑖𝑖�. But we know that the result is the unitary matrix, therefore 𝑀𝑀𝑖𝑖𝑖𝑖 = �𝐚𝐚𝑖𝑖|𝐚𝐚𝑖𝑖� = 𝛿𝛿𝑖𝑖𝑖𝑖  which is the 
definition of orthonormal set of vectors, so that we can conclude that the columns of 𝐀𝐀 form an 
orthonormal set. 

 

 

ORTHOGONAL MATRICES: 

All the previous properties can be particularised to matrices which are purely real. In that case, the 
Hermitian conjugate simply becomes the transpose in all the proofs above, e.g. the inner product 
becomes the dot product  〈𝐱𝐱|𝐲𝐲〉 = 𝐱𝐱†𝐲𝐲 = 𝐱𝐱T𝐲𝐲 = 𝐱𝐱 ⋅ 𝐲𝐲, and all results remain identical after that 
substitution.  

The purely real case of unitary matrices is called orthogonal matrix. 

 

 

  

𝐀𝐀 is a unitary matrix ⟺ 〈𝐱𝐱|𝐲𝐲〉 = 〈𝐀𝐀𝐱𝐱|𝐀𝐀𝐲𝐲〉 for any vectors 𝐱𝐱 and 𝐲𝐲 

 

 

𝐀𝐀 is a unitary matrix ⟺ 𝐀𝐀† = 𝐀𝐀−1 

 

 

𝐀𝐀 is a unitary matrix ⟺ Columns of 𝐀𝐀 form an orthonormal set 

 

 

𝐀𝐀 is an orthogonal matrix 
 ⟺ 𝐀𝐀T = 𝐀𝐀−1 

⟺ Columns of 𝐀𝐀 form an orthonormal set of real vectors 
⟺ 〈𝐱𝐱|𝐲𝐲〉 = 〈𝐀𝐀𝐱𝐱|𝐀𝐀𝐲𝐲〉 for any vectors 𝐱𝐱 and 𝐲𝐲 
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F. POWERS OF A MATRIX (REPEATED MULTIPLICATION) 

Calculating powers of a matrix (i.e. multiply a matrix times itself 𝑛𝑛 times) can have interesting 
applications. This is especially true in fields different to “linear transformation” of vectors. 

 

Application to directed graphs: 

For example, given a “directed graph” (a set of vertices connected by edges, in which the edges have 
directions associated with them), you can construct an associated matrix 𝐀𝐀 as follows: 𝑎𝑎𝑖𝑖𝑖𝑖 = 1 if there 
is an edge going from the 𝑗𝑗-th to the 𝑖𝑖-th node, otherwise 𝑎𝑎𝑖𝑖𝑖𝑖 = 0. Then, the powers of this matrix 𝐀𝐀𝑁𝑁 
tell you how many ways there is to travel from 𝑗𝑗 to 𝑖𝑖 in exactly N jumps. 

 

24) Obtain the matrix associated to the following connected graph and obtain the total number of 
ways to travel between nodes in 4 jumps. 

 

𝐀𝐀 = �
0 0 1
1 0 1
0 1 0

�;  𝐀𝐀2 = �
0 1 0
0 1 1
1 0 1

�  𝐀𝐀3 = �
1 0 1
1 1 1
0 1 1

�  𝐀𝐀4 = �
0 1 1
1 1 2
1 1 1

� 

e.g. There are exactly two different ways of getting from 3 to 2 in exactly 4 jumps. Can you find them? 
We also see it is impossible to travel from 1 to 1 in exactly 4 jumps. 

Using a computer, you can go on calculating this in a breeze, e.g.   𝐀𝐀20 = �
49 65 86
86 114 151
65 86 114

� 

There are exactly 49 different ways of getting from 1 to 1 in exactly 20 jumps! 

And this was a remarkably simple graph with only 3 nodes. Imagine 100’s of nodes: you could model 
the tube network for London and find number of ways to travel between stations. 
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Application to the evolution of a system (Markov chain): 

The probabilities of weather conditions (modelled as either rainy or sunny), given the weather on the 
preceding day, can be represented by a transition matrix: 

𝐀𝐀 = �0.9 0.5
0.1 0.5� 

Where the element 𝑎𝑎𝑖𝑖𝑖𝑖  represents the probability that the weather condition is 𝑖𝑖 if the preceding day 
it was 𝑗𝑗, with 𝑖𝑖, 𝑗𝑗 = 1 for sunny day and = 2 for rainy day. This can be represented as a graph as follows 
(taken from Wikipedia): 

 

25) Find the following regarding the below Markov process: 

 

a) Given that today is rainy, what is the prediction for 5 days from today? 
b) What is the steady-state expected proportion of sunny and rainy days, in the long run? 

Solution: 

a) The statement that today is rainy can be given as a “state vector” 𝐯𝐯0 = (0,1)𝑇𝑇. 

The state tomorrow will have probabilities given by: 𝐯𝐯𝟏𝟏 = 𝐀𝐀𝐯𝐯𝟎𝟎 = �0.9 0.5
0.1 0.5� �

0
1� = �0.5

0.5� 

The state on the day after tomorrow: 𝐯𝐯𝟐𝟐 = 𝐀𝐀𝐯𝐯𝟏𝟏 = 𝐀𝐀𝟐𝟐𝐯𝐯𝟎𝟎 = �0.7
0.3� 

By induction, it is evident that the state for the 𝑁𝑁-th day will be given by: 

𝐯𝐯𝐍𝐍 = 𝐀𝐀𝐍𝐍𝐯𝐯𝟎𝟎 

Which a computer can calculate extremely fast. 

So 𝐯𝐯𝟓𝟓 = 𝐀𝐀𝟓𝟓𝐯𝐯𝟎𝟎 = �0.83504 0.8248
0.16496 0.1752� �

0
1� = �0.8248

0.1752� 

Notice that, as the power was increased, the two rows of the matrix tended to the same value. That 
is because the first and second columns represents the expected distribution of weather, after 𝑁𝑁 days, 
if the initial day was sunny or rainy, respectively. Obviously, as the days go past, the state of the 
weather today becomes less and less relevant, and the distribution tends to a steady state which 
depends only on the transition probabilities between the different states. This is usually denoted as 
𝐀𝐀∞.  Calculating an infinite number of multiplications cannot be done, but there is a smart way to do 
it.  

b) Once the system reaches an equilibrium point, we know that the state will not change after applying 
one more day, so: 

𝐀𝐀𝐯𝐯 = 𝐯𝐯  

https://en.wikipedia.org/wiki/Examples_of_Markov_chains
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𝐀𝐀𝐯𝐯 = 𝐈𝐈𝐯𝐯  

(where 𝐈𝐈 is the identity matrix �1 0
0 1�, which can be multiplied times a vector or matrix without 

changing anything) 

𝐀𝐀𝐯𝐯 − 𝐈𝐈𝐯𝐯 = 𝟎𝟎 

(𝐀𝐀 − 𝐈𝐈)𝐯𝐯 = 𝟎𝟎 

�−0.1 0.5
0.1 −0.5� �

𝑣𝑣𝑥𝑥
𝑣𝑣𝑦𝑦� = �0

0� 

This is a system of two equations and two unknowns which can be solved.  

Using the usual method to solve a system of equations yields 0 = 0.  

This is because the system of equations is undetermined. Its solution has one degree of freedom. WE 
can find it by assuming 𝑣𝑣𝑥𝑥 = 𝛼𝛼 and finding 𝑣𝑣𝑦𝑦 = 0.2𝛼𝛼, solution valid for any value of 𝛼𝛼. If we now add 
the condition that 𝑣𝑣𝑥𝑥 + 𝑣𝑣𝑦𝑦 = 1, since they are probabilities, we get that the steady state is �𝑣𝑣𝑥𝑥 ,𝑣𝑣𝑦𝑦� =
(0.833 … , 0.166 … ) 

 

OTHER APPLICATIONS 

26) Example in Physics: General Lorentz Transformation (special relativity) seen as a matrix linear 
transformation. Taken from Prof. Victor Yakovenko notes “In most textbooks, the Lorentz 
transformation is derived from the two postulates: the equivalence of all inertial reference 
frames and the invariance of the speed of light. However, the most general transformation of 
space and time coordinates can be derived using only the equivalence of all inertial reference 
frames and the symmetries of space and time.”  

http://www2.physics.umd.edu/~yakovenk/teaching/Lorentz.pdf 

Derivation of Lorentz transformation from first principles. Very natural/fundamental assumptions: 

0) From translational symmetry of space and time, transformation between coordinates systems 
must be a linear transformation: 

From translational symmetry of space and time, the relative distances between two events in one 
reference frame must depend only on the relative distances in another frame: 𝑥𝑥2′ − 𝑥𝑥1′ = 𝑓𝑓𝑥𝑥(𝑥𝑥2 −
𝑥𝑥1, 𝑡𝑡2 − 𝑡𝑡1) and 𝑡𝑡1′ − 𝑡𝑡2′ = 𝑓𝑓𝑡𝑡(𝑥𝑥2 − 𝑥𝑥1, 𝑡𝑡2 − 𝑡𝑡1). Because these equations must be valid for any two 
events, the functions 𝑓𝑓𝑥𝑥 and 𝑓𝑓𝑡𝑡 must be linear functions. Therefore: Consider reference system origin 
𝑂𝑂 with (𝑥𝑥, 𝑡𝑡) and reference system origin 𝑂𝑂′ at relative speed 𝑣𝑣 with respect to 𝑂𝑂, coordinates (𝑥𝑥′, 𝑡𝑡′). 
The relation must be linear, hence can be described by a matrix: 

�𝑥𝑥′
𝑡𝑡′
� = 𝐀𝐀�𝑥𝑥𝑡𝑡�   →    �𝑥𝑥′

𝑡𝑡′
� = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� �
𝑥𝑥
𝑡𝑡� 

1) Definition of relative speed between the two systems: 

1a)  𝑥𝑥′ = 0 → 𝑥𝑥 = 𝑣𝑣𝑡𝑡       Therefore: �𝑥𝑥′
𝑡𝑡′
� = �𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑� �
𝑥𝑥
𝑡𝑡� → �0

𝑡𝑡′� = �𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑� �

𝑣𝑣𝑡𝑡
𝑡𝑡 � → 𝑏𝑏 = −𝑎𝑎𝑣𝑣 

1b)  𝑥𝑥 = 0 → 𝑥𝑥′ = −𝑣𝑣𝑡𝑡′   Therefore: → �−𝑣𝑣𝑡𝑡′
𝑡𝑡′

� = �𝑎𝑎 −𝑎𝑎𝑣𝑣
𝑐𝑐 𝑑𝑑 ��0

𝑡𝑡� →  𝑡𝑡′ = 𝑑𝑑𝑡𝑡 →  −𝑣𝑣𝑑𝑑𝑡𝑡 = −𝑣𝑣𝑎𝑎𝑡𝑡 →

𝑎𝑎 = 𝑑𝑑 

http://www2.physics.umd.edu/%7Eyakovenk/teaching/Lorentz.pdf
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Therefore, our matrix must always have certain relations between its elements: 

�𝑥𝑥′
𝑡𝑡′
� = �𝑎𝑎 −𝑎𝑎𝑣𝑣

𝑐𝑐 𝑎𝑎 � �𝑥𝑥𝑡𝑡� = 𝑎𝑎 � 1 −𝑣𝑣
𝑐𝑐/𝑎𝑎 1 � �𝑥𝑥𝑡𝑡� = 𝛾𝛾𝑣𝑣 �

1 −𝑣𝑣
𝐹𝐹𝑣𝑣 1 � �𝑥𝑥𝑡𝑡� 

2) Combination of two transformations must also be itself a transformation: 
𝐀𝐀𝑣𝑣2𝐀𝐀𝑣𝑣1 = 𝐀𝐀𝑣𝑣 

𝐀𝐀𝑣𝑣2𝐀𝐀𝑣𝑣1 = 𝛾𝛾𝑣𝑣1𝛾𝛾𝑣𝑣2 �
1 − 𝐹𝐹𝑣𝑣1𝑣𝑣2 −𝑣𝑣1 − 𝑣𝑣2
𝐹𝐹𝑣𝑣1 + 𝐹𝐹𝑣𝑣2 1 − 𝐹𝐹𝑣𝑣1𝑣𝑣2

� must also be of the form 𝛾𝛾𝑣𝑣 �
1 −𝑣𝑣
𝐹𝐹𝑣𝑣 1 � 

Therefore: 𝐹𝐹𝑣𝑣1𝑣𝑣2 = 𝐹𝐹𝑣𝑣2𝑣𝑣1 →  𝐹𝐹𝑣𝑣1
𝑣𝑣1

= 𝐹𝐹𝑣𝑣2
𝑣𝑣2

 for any 𝑣𝑣𝑖𝑖    → 𝐹𝐹𝑣𝑣𝑖𝑖 = (𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑡𝑡)𝑣𝑣𝑖𝑖 = 𝑣𝑣𝑖𝑖
𝛼𝛼2

  

3) Transformations with opposite velocities must bring us back to the original system: 

𝐀𝐀𝑣𝑣𝐀𝐀−𝑣𝑣 = 𝐈𝐈 

𝐀𝐀𝑣𝑣𝐀𝐀−𝑣𝑣 = 𝛾𝛾𝑣𝑣𝛾𝛾−𝑣𝑣 �
1 −𝑣𝑣

𝑣𝑣/𝛼𝛼2 1 � � 1 𝑣𝑣
−𝑣𝑣/𝛼𝛼2 1� = 𝛾𝛾𝑣𝑣𝛾𝛾−𝑣𝑣

⎝

⎛
1 +

𝑣𝑣2

𝛼𝛼2
0

0 1 +
𝑣𝑣2

𝛼𝛼2⎠

⎞ = �1 0
0 1� 

 →    𝛾𝛾𝑣𝑣𝛾𝛾−𝑣𝑣 =
1

1 + 𝑣𝑣2/𝛼𝛼2
 

Because of symmetry of space, the function 𝛾𝛾𝑣𝑣 must depend only on the absolute value of velocity: 

𝛾𝛾𝑣𝑣 =
1

�1 + 𝑣𝑣2
𝛼𝛼2

 

From those 4 assumptions, we have arrived at the general form of the transformation: 

 

The ONLY free parameter to determine is 𝛼𝛼, which has dimensions of speed. 

Galileo and Newton would have said “addition of velocities” (who can blame them) as a strong version 
of (2):  𝐀𝐀𝑣𝑣1𝐀𝐀𝑣𝑣2 = 𝐀𝐀𝑣𝑣1+𝑣𝑣2. This results in 1/𝛼𝛼2 = 0 giving the Galilean transformations. 

Einstein instead would only agree on 𝐀𝐀𝑣𝑣𝐀𝐀−𝑣𝑣 = 𝐀𝐀0 as strictly necessary (which is (3)) and then used 
the extra degree of freedom allowed by this to say “a light ray is seen the same in any frame” to obtain 
a value for 𝛼𝛼: 

 𝑥𝑥 = 𝑐𝑐𝑡𝑡 → 𝑥𝑥′ = 𝑐𝑐𝑡𝑡′      ⟹       �𝑐𝑐𝑡𝑡′
𝑡𝑡′
� = 𝐀𝐀𝑣𝑣 �

𝑐𝑐𝑡𝑡
𝑡𝑡 �  →   𝛼𝛼 = ±𝑖𝑖𝑐𝑐  →     𝛼𝛼2 = −𝑐𝑐2  

 

 

 

�𝑥𝑥′
𝑡𝑡′
� =

1
�1 + 𝑣𝑣2/𝛼𝛼2

� 1 −𝑣𝑣
𝑣𝑣/𝛼𝛼2 1 ��𝑥𝑥𝑡𝑡� 
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2.2 MATRIX TRACE AND DETERMINANT 

 

There are two operations that act on matrices and result in a useful scalar related to some important 
properties of that matrix: the trace, and the determinant. They can only act on square matrices. 

 

A. TRACE OF A MATRIX 

 

 

Properties: 

 Trace is a linear operation: Tr(𝜆𝜆𝐀𝐀+ 𝜇𝜇𝐁𝐁) = 𝜆𝜆Tr(𝐀𝐀) + 𝜇𝜇Tr(𝐁𝐁)  
  Trace of the product is independent of the order: Tr(𝐀𝐀𝐁𝐁) = Tr(𝐁𝐁𝐀𝐀) 
  Trace of the identity matrix equals its dimension: Tr(𝐈𝐈) = dim (𝐈𝐈) 

It can be shown that the ONLY operator which fulfils the three properties above is the sum 
of the elements of the diagonal. In fact, we could say that the trace is defined by these 
properties. 

1) Find the trace of matrices 𝐀𝐀 = �2 1
0 1�, 𝐁𝐁 = �0 2

1 0�, 𝐀𝐀𝐁𝐁, and 𝐁𝐁𝐀𝐀 

Tr(𝐀𝐀) = Tr ��2 1
0 1�� = 3;    Tr(𝐁𝐁) = Tr ��0 2

1 0�� = 0;  

Tr(𝐀𝐀𝐁𝐁) = Tr ��2 1
0 1� �

0 2
1 0�� = Tr ��1 4

1 0�� = 1 

Tr(𝐁𝐁𝐀𝐀) = Tr ��0 2
1 0� �

2 1
0 1�� = Tr ��0 2

2 1�� = 1 

As expected, Tr(𝐀𝐀𝐁𝐁) = Tr(𝐁𝐁𝐀𝐀). 

 

  

The trace Tr(𝐀𝐀) is equal to the sum of the elements in the diagonal. 
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B. MATRIX DETERMINANT 

Beautiful explanation in 3blue1brown YouTube channel:  
The determinant | Essence of linear algebra, chapter 6 (10 min) 

 

 

The determinant of a matrix tells us about the associated linear transformation: 

For a 1D linear transformation (𝑦𝑦 = 𝑎𝑎𝑎𝑎) it tells us how lengths are scaled, i.e. det(𝑎𝑎) = 𝑎𝑎, 
For a 2D linear transformation (𝐛𝐛 = 𝐀𝐀𝐀𝐀) it tells us how areas are scaled (area of 
parallelogram formed by transformed basis), 
For a 3D linear transformation (𝐛𝐛 = 𝐀𝐀𝐀𝐀) it tells us how volumes are scaled (volume of 
parallelepiped formed by transformed basis). etc. 

The determinant is negative if the length/area/volume/… is “flipped”. 

The determinant is zero if the transformation “squashes” the input vector space into an 
output space of smaller dimensions (e.g. projection of 2D space into a line, projection of 3D 
space into a plane or line, etc.) 
 

C. CALCULATION OF THE DETERMINANT: GENERAL AND SIMPLE CASES 

 

For 𝟐𝟐 × 𝟐𝟐 matrices: det ��𝑎𝑎 𝑏𝑏
𝑐𝑐 𝑑𝑑�� = 𝑎𝑎𝑑𝑑 − 𝑏𝑏𝑐𝑐 

It is equal to the oriented area of the parallelogram enclosed by the two column vectors. 

For 𝟑𝟑 × 𝟑𝟑 matrices: det ��
𝑎𝑎 𝑏𝑏 𝑐𝑐
𝑑𝑑 𝑒𝑒 𝑓𝑓
𝑔𝑔 ℎ 𝑖𝑖

�� = 𝑎𝑎 ��𝑒𝑒 𝑓𝑓
ℎ 𝑖𝑖

�� − 𝑏𝑏 ��𝑑𝑑 𝑓𝑓
𝑔𝑔 𝑖𝑖 �� + 𝑐𝑐 ��𝑑𝑑 𝑒𝑒

𝑔𝑔 ℎ�� 

It is equal to the oriented volume of the parallelepiped enclosed by the three column vectors 
of the matrix. 

For 𝑵𝑵 × 𝑵𝑵 matrices (general recipe):  

Consider a square matrix 𝐀𝐀 with elements 𝑎𝑎𝑖𝑖𝑖𝑖. The determinant is equal to the oriented N-
dimensional “volume” of the columns. It is defined in terms of determinants of (𝑁𝑁 − 1) × (𝑁𝑁 −
1) matrices.  

1. Calculate the minors of the matrix 𝑀𝑀𝑖𝑖𝑖𝑖 for any row or column. 
2. Calculate the cofactors of the matrix 𝐶𝐶𝑖𝑖𝑖𝑖 for that same row or column. 
3. Sum the products of the elements of that row or column with each corresponding 

cofactor: e.g. 𝑎𝑎21𝐶𝐶21 + 𝑎𝑎22𝐶𝐶22 + 𝑎𝑎23𝐶𝐶23 (fixed 𝑖𝑖 = 2)  
or 𝑎𝑎13𝐶𝐶13 + 𝑎𝑎23𝐶𝐶23 + 𝑎𝑎33𝐶𝐶33 (fixed 𝑗𝑗 = 3). 

 

https://www.youtube.com/watch?v=Ip3X9LOh2dk&t=0s&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=7
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Definition: The minor 𝑀𝑀𝑖𝑖𝑖𝑖 of the element 𝑎𝑎𝑖𝑖𝑖𝑖  of an 𝑁𝑁 × 𝑁𝑁 matrix 𝐀𝐀 is equal to the determinant of 
the (𝑁𝑁 − 1) × (𝑁𝑁 − 1) matrix that results when we remove the i-th row and j-th column of 𝐀𝐀. 

Example: Calculate all the minors 𝑀𝑀𝑖𝑖𝑖𝑖 of the matrix 𝐀𝐀 = �
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

� 

To calculate 𝑀𝑀𝑖𝑖𝑖𝑖 cross out the row and column corresponding to the element 𝑎𝑎𝑖𝑖𝑖𝑖. That is, the 𝑖𝑖-th 
row, and the 𝑗𝑗-th column. The minor is the determinant of the matrix that is left. 

𝑀𝑀11 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

�� = det ��
𝑎𝑎22 𝑎𝑎23
𝑎𝑎32 𝑎𝑎33�� = 𝑎𝑎22𝑎𝑎33 − 𝑎𝑎23𝑎𝑎32 

𝑀𝑀12 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

�� = det ��
𝑎𝑎21 𝑎𝑎23
𝑎𝑎31 𝑎𝑎33�� = 𝑎𝑎21𝑎𝑎33 − 𝑎𝑎23𝑎𝑎31 

𝑀𝑀13 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

�� = det ��
𝑎𝑎21 𝑎𝑎22
𝑎𝑎31 𝑎𝑎32�� = 𝑎𝑎21𝑎𝑎32 − 𝑎𝑎22𝑎𝑎31 

𝑀𝑀21 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

�� = det ��
𝑎𝑎12 𝑎𝑎13
𝑎𝑎32 𝑎𝑎33�� = 𝑎𝑎12𝑎𝑎33 − 𝑎𝑎13𝑎𝑎32 

𝑀𝑀22 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

��= det ��
𝑎𝑎11 𝑎𝑎13
𝑎𝑎31 𝑎𝑎33�� = 𝑎𝑎11𝑎𝑎33 − 𝑎𝑎13𝑎𝑎31 

𝑀𝑀23 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

�� = det ��
𝑎𝑎11 𝑎𝑎12
𝑎𝑎31 𝑎𝑎32�� = 𝑎𝑎11𝑎𝑎32 − 𝑎𝑎12𝑎𝑎31 

𝑀𝑀31 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

��= det ��
𝑎𝑎12 𝑎𝑎13
𝑎𝑎22 𝑎𝑎23�� = 𝑎𝑎12𝑎𝑎23 − 𝑎𝑎13𝑎𝑎22 

𝑀𝑀32 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

�� = det ��
𝑎𝑎11 𝑎𝑎13
𝑎𝑎21 𝑎𝑎23�� = 𝑎𝑎11𝑎𝑎23 − 𝑎𝑎13𝑎𝑎21 

𝑀𝑀33 = det ��
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

��= det ��
𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22�� = 𝑎𝑎11𝑎𝑎22 − 𝑎𝑎12𝑎𝑎21 

Definition: 𝐶𝐶𝑖𝑖𝑖𝑖 = (−1)𝑖𝑖+𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖. The cofactor 𝐶𝐶𝑖𝑖𝑖𝑖 associated with the minor 𝑀𝑀𝑖𝑖𝑖𝑖  is equal to the minor 
𝑀𝑀𝑖𝑖𝑖𝑖 with a flip in sign given by (−1)𝑖𝑖+𝑖𝑖, which is a chessboard-like array of +1 and -1.  

Example: This is what the term (−1)𝑖𝑖+𝑖𝑖 looks like for all elements of a 3 × 3 matrix: 

(−1)𝑖𝑖+𝑖𝑖 = �
+ − +
− + −
+ − +

� 

Therefore, a matrix containing all cofactors, usually called 𝐂𝐂, looks like this: 

𝐂𝐂 = �
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23
𝐶𝐶31 𝐶𝐶32 𝐶𝐶33

� = �
𝑀𝑀11 −𝑀𝑀12 𝑀𝑀13
−𝑀𝑀21 𝑀𝑀22 −𝑀𝑀23
𝑀𝑀31 −𝑀𝑀32 𝑀𝑀33

� 
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Calculation of determinants becomes messy and slow for matrices greater than 3 × 3. We should 
always choose the row or column wisely to make the calculation easier (normally the one which has 
a greater number of zeroes). 

2) Example: Calculate the determinant of 𝐀𝐀 = �

1 0 2 −1
0 0 2 1
2 2 1 0
3 0 −2 1

� 

Let’s choose the second column, because all elements except one are zero. 

The determinant will be the sum of the products of the elements of that column with each 
corresponding cofactor: 

det(𝐀𝐀) = 0 𝐶𝐶12 + 0 𝐶𝐶22 + 2 𝐶𝐶32 + 0 𝐶𝐶42 

= −0 𝑀𝑀12 + 0 𝑀𝑀22 − 2 𝑀𝑀32 + 0 𝑀𝑀42 

= −2 𝑀𝑀32 = −2 det ��
1 2 −1
0 2 1
3 −2 1

�� 

Which in turn can be calculated by choosing the second row (remember the sign (−1)𝑖𝑖+𝑖𝑖)  

= −2 �−0 + 2 �1 −1
3 1 � − 1 �1 2

3 −2�� 

= −2(2(1 + 3) − 1|(−2 − 6)|) 

= −2(8 + 8) = −32 

 

SIMPLE CASES 

 

Diagonal matrix: A diagonal matrix is one whose off-diagonal elements are all zero. It corresponds to 
scaling of axes. 

Example: det ��

2 0 0 0
0 −4 0 0
0 0 𝜋𝜋 0
0 0 0 𝜆𝜆 + 2

�� = 2(−4)(𝜋𝜋)(𝜆𝜆 + 2) = −8𝜋𝜋𝜆𝜆 − 16𝜋𝜋 

Triangular matrix (upper/lower triangular):  An upper/lower triangular matrix has zeroes in all 
elements below/above the diagonal. It corresponds to scaling and shear of axes. The area remains 
the same as if it was only scaling. 

Example: Upper triangular matrix:  det ��
1 3 2
0 −4 1
0 0 2

�� = 1(−4)(2) = −8 

Example: Lower triangular matrix:  det ��
1 0 0
7 −4 0
3 1 2

�� = 1(−4)(2) = −8 

The determinant of diagonal or triangular matrix is equal to the product of the elements of the 
diagonal.  
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D. PROPERTIES OF DETERMINANTS 

Properties related to matrix operations: 

• Determinant is NOT linear det(𝜆𝜆𝐀𝐀 + 𝜇𝜇𝐁𝐁) ≠ 𝜆𝜆 det(𝐀𝐀) + 𝜇𝜇 det(𝐁𝐁) 
• Determinant of a product: det(𝐀𝐀𝐁𝐁) = det(𝐁𝐁𝐀𝐀) = det(𝐀𝐀) det (𝐁𝐁) 

Visually: the combination of two transformations always changes the area in the same way 
regardless of the order of the transformations. 

• Determinant of the transpose: det�𝐀𝐀T� = det(𝐀𝐀).  
• Determinant of the complex conjugate: det(𝐀𝐀∗) = (det(𝐀𝐀))∗ 

  

Properties related to changes in the vectors forming the columns and rows of a matrix: 

It is easy to interpret these properties in terms of the vectors forming the columns of the matrix, 
which are the transformed version of the input basis 𝒜𝒜(𝐞𝐞𝐢𝐢). But the same properties apply to the row 
vectors, too, as follows from the transpose property. 

• If the vectors of a matrix are linearly dependent, the determinant of the matrix is zero  
o The transformation squashes N-dimensional space into a space of lower dimension 

(equal to the dimension of the span of the vectors) 
o If two vectors are proportional to each other, the determinant is zero (duh) 

• Interchange of vectors: Interchanging any two vectors in the matrix flips the sign of the 
determinant (as the transformed grid is flipped) but leaves the magnitude unchanged. 

• Common factors: You can remove a common factor 𝜆𝜆 to any vector in the matrix, and the 
remaining determinant just needs to be multiplied by 𝜆𝜆.   

 e.g.  det ��
2 5 0
3 −20 1
1 15 2

��   = 5 det ��
2 1 0
1 −4 3
1 3 2

�� 

o Visually: This scales the transformed grid along one of its directions by a factor 𝜆𝜆. 
o By extension, doing it to all columns: |𝜆𝜆𝐀𝐀| = 𝜆𝜆𝑁𝑁|𝐀𝐀|. 

• Linear combination: You can add, to any vector, a linear combination of the other vectors, 
and the determinant is unchanged! (very powerful property!) 

o  𝐀𝐀𝑖𝑖 + 𝜆𝜆𝐀𝐀𝑖𝑖 → 𝐀𝐀𝑖𝑖 (for any 𝜆𝜆 and any 𝑗𝑗 ≠ 𝑖𝑖) does not change the determinant 
o Visually: This is like introducing a shear into a given transformation. The 

areas/volumes are unaffected by shears (area of parallelepiped unchanged) 
 

The determinant can be elegantly defined via a selection of its properties. 
 

The determinant of a matrix 𝐀𝐀 is the unique function that satisfies:  
1) det(𝐀𝐀) = 0 when two columns are equal. 
2) The determinant is linear in the columns. 
3) if 𝐈𝐈 is the identity, det(𝐈𝐈) = 1. 
 

You can easily convince yourself that the oriented volume vol(𝐀𝐀1,𝐀𝐀2, . . . , 𝐀𝐀𝑛𝑛) between vectors 
𝐀𝐀1,𝐀𝐀2, . . . , 𝐀𝐀𝑛𝑛 is a function that satisfies exactly those same properties if we place the vectors as the 
columns of a matrix 𝐀𝐀 = (𝐀𝐀1,𝐀𝐀2, . . . , 𝐀𝐀𝑛𝑛). Hence vol(𝐀𝐀1,𝐀𝐀2, . . . , 𝐀𝐀𝑛𝑛) = det(𝐀𝐀). 
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Using the properties of determinants can be very useful to calculate determinants because they 
allow you to modify the matrix and turn it into a triangular matrix, for example, in which calculation 
of the determinant is trivial. 
 

3) Example: Calculate det ��
2 2 0
1 −3 4
1 3 2

��  by using properties of determinants to turn the matrix 

into a triangular one. 

 
Modify the second row by adding to it (-1/2) of the first one. We write that operation as 𝑅𝑅2 −
�1
2
�𝑅𝑅1 → 𝑅𝑅2. Continue doing similar operations which leave the determinant unchanged: 

det ��
2 2 0
1 −3 4
1 3 2

��
𝑅𝑅2−�

1
2
�𝑅𝑅1→𝑅𝑅2

�⎯⎯⎯⎯⎯⎯⎯⎯⎯�= det ��
2 2 0
0 −4 4
1 3 2

��
𝑅𝑅3−�

1
2
�𝑅𝑅1→𝑅𝑅3

�⎯⎯⎯⎯⎯⎯⎯⎯⎯�

= det ��
2 2 0
0 −4 4
0 2 2

��
𝑅𝑅3+�

1
2
�𝑅𝑅2→𝑅𝑅3

�⎯⎯⎯⎯⎯⎯⎯⎯⎯�= det ��
2 2 0
0 −4 3
0 0 4

��

= (this is a triangular matrix) = (2)(−4)(4) = −32 
 
 
 Problems: 

4) Find the determinant �
1 2 1
3 5 3
1 1 1

� 

Solution: Two columns are equal, therefore the determinant is zero. 

 

5) Solve the following equation with respect to 𝑎𝑎: 

 

�

𝑎𝑎 1 0 1
1 𝑎𝑎 1 0
0 1 𝑎𝑎 1
1 0 1 𝑎𝑎

� = 0 

 
Solution: Let’s expand the determinant along the 1st row: 

�

𝑎𝑎 1 0 1
1 𝑎𝑎 1 0
0 1 𝑎𝑎 1
1 0 1 𝑎𝑎

� = 𝑎𝑎 �
𝑎𝑎 1 0
1 𝑎𝑎 1
0 1 𝑎𝑎

� − 1 �
1 1 0
0 𝑎𝑎 1
1 1 𝑎𝑎

� + 0 − 1 �
1 𝑎𝑎 1
0 1 𝑎𝑎
1 0 1

� = 0 

𝑎𝑎[𝑎𝑎(𝑎𝑎2 − 1) − 1(𝑎𝑎 − 0) + 0] − 1[1(𝑎𝑎2 − 1) − 1(0 − 1) + 0] − 1[1(1 − 0) − 𝑎𝑎(0 − 𝑎𝑎) + 1(−1)] 
→ 𝑎𝑎(𝑎𝑎3 − 2𝑎𝑎)− 1(𝑎𝑎2 − 1 + 1) − 1(1 + 𝑎𝑎2 − 1) = 0 

→ 𝑎𝑎4 − 2𝑎𝑎2 − 𝑎𝑎2 − 𝑎𝑎2 = 0 
→ 𝑎𝑎4 − 4𝑎𝑎2 = 𝑎𝑎2(𝑎𝑎2 − 4) = 0 

→ �𝑎𝑎1 = 0, 𝑎𝑎2,3 = ±2� 
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2.3 MATRIX INVERSE, RANGE AND NULL SPACE 

Beautiful introduction in 3blue1brown YouTube channel:  
Inverse matrices, column space and null space | Essence of linear algebra ch. 7 (12 min) 

 

A. SOLVING THE INVERSE TRANSFORMATION 

So far, I have given you 𝐱𝐱 and asked you to find 𝐯𝐯 = 𝐀𝐀𝐱𝐱. 

What if I give you the output 𝐯𝐯 and ask you to solve for 𝐱𝐱? How do we solve 𝐀𝐀𝐱𝐱 = 𝐯𝐯 for 𝐱𝐱?  
This is the important inverse problem. 

Consider the simplest case: 1D-to-1D transformations. A linear transformation is a multiplication  

𝑣𝑣 =  𝑎𝑎𝑎𝑎 (where 𝑎𝑎 is a scalar playing the role of the 1 × 1 matrix) 

We can find the value of 𝑎𝑎 given a value for 𝑣𝑣 by dividing both sides by 𝑎𝑎: 

𝑎𝑎 =  𝑎𝑎−1𝑣𝑣 (where 𝑎𝑎−1 = (1/𝑎𝑎) is a scalar playing the role of a different 1 × 1 matrix called inverse) 

We can see this as an inverse transformation. A transformation which undoes the previous one. 

In higher dimensions, the inverse transformation is represented by a matrix which we call the inverse 
matrix, denoted as 𝐀𝐀−1. 

 

Evidently, if we apply the transformation 𝐀𝐀 and follow it by the transformation 𝐀𝐀−1, we will get back 
to the original vector.  

 

 

This means that 𝐀𝐀−1𝐀𝐀𝐱𝐱 = 𝐱𝐱, or in other words, 𝐀𝐀−1𝐀𝐀 = 𝐈𝐈, where 𝐈𝐈 is the identity matrix which 
represents the unitary transformation that leaves everything unchanged. 

𝐱𝐱 = 𝒜𝒜−1[𝒜𝒜(𝐱𝐱)]   →   𝐀𝐀−1𝐀𝐀 = 𝐀𝐀𝐀𝐀−1 = 𝐈𝐈 

https://www.youtube.com/watch?v=uQhTuRlWMxw&index=7&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
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TRIVIAL EXAMPLES OF INVERSE TRANSFORMATION 

Scaling: Consider a transformation which scales the 𝑎𝑎-direction by 3 and the 𝑦𝑦-direction by ½. The 
inverse transformation should undo the previous one, therefore it should scale the 𝑎𝑎-direction by 1/3 
and the 𝑦𝑦-direction by 2. 

Indeed, the matrices fulfil the condition: 

𝐀𝐀 = �3 0
0 1/2� ;  𝐀𝐀−𝟏𝟏 = �1/3 0

0 2�;   𝐀𝐀−𝟏𝟏𝐀𝐀 = �1/3 0
0 2� �

3 0
0 1/2� = �1 0

0 1� 

 

Rotations: Consider a 2D rotation by 𝜃𝜃 degrees clockwise. The inverse transformation should be an 
identical rotation but anticlockwise, i.e. with a reverse sign in 𝜃𝜃. 

𝐀𝐀 = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � ;  rotation 𝜃𝜃 clockwise 

𝐀𝐀−𝟏𝟏 = �cos(−𝜃𝜃) − sin(−𝜃𝜃)
sin(−𝜃𝜃) cos(−𝜃𝜃) � = � cos𝜃𝜃 sin𝜃𝜃

− sin𝜃𝜃 cos𝜃𝜃�; rotation 𝜃𝜃 anti-clockwise 

Indeed: 𝐀𝐀−𝟏𝟏𝐀𝐀 = � cos𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos𝜃𝜃� �

cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � =

� cos2 𝜃𝜃 + sin2 𝜃𝜃 − cos𝜃𝜃 sin𝜃𝜃 + cos𝜃𝜃 sin𝜃𝜃
− cos𝜃𝜃 sin𝜃𝜃 + cos𝜃𝜃 sin𝜃𝜃 cos2 𝜃𝜃 + sin2 𝜃𝜃

� = �1 0
0 1� = 𝐈𝐈 

 

CALCULATION OF THE INVERSE – GENERAL RECIPE (IF IT EXISTS) 

Given a matrix 𝐀𝐀 with elements 𝑎𝑎𝑖𝑖𝑖𝑖. 

We calculate the matrix 𝐂𝐂 containing the cofactors 𝐶𝐶𝑖𝑖𝑖𝑖 as defined earlier. 

The transpose of the matrix of cofactors 𝐂𝐂𝑇𝑇 will have elements 𝐷𝐷𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑖𝑖𝑖𝑖. (Note the swap 𝑖𝑖 ↔ 𝑗𝑗) 

The inverse matrix 𝐀𝐀−𝟏𝟏 will have elements 𝑏𝑏𝑖𝑖𝑖𝑖 which can be calculated as: 

𝑏𝑏𝑖𝑖𝑖𝑖 =
𝐶𝐶𝑖𝑖𝑖𝑖

det(𝐀𝐀)
 

Or, writing the matrix explicitly: 

𝐀𝐀−𝟏𝟏 =
𝐂𝐂𝑇𝑇

det (𝐀𝐀)
 

For a 2 × 2 matrix, the recipe can be written very simply: 

𝐀𝐀−1 =
1

𝑎𝑎11𝑎𝑎22 − 𝑎𝑎12𝑎𝑎21
�
𝑎𝑎22 −𝑎𝑎12
−𝑎𝑎21 𝑎𝑎11 � 

This matrix fulfils 𝐀𝐀−𝟏𝟏𝐀𝐀 = 𝐀𝐀𝐀𝐀−𝟏𝟏 = 𝐈𝐈 
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1) Find the inverse matrix for 𝐀𝐀 = �
1 2 0
0 1 −1
0 0 2

� 

Solution: 

First find the determinant. Since it is a triangular matrix, the determinant is the product of the 
diagonal, so det(𝐀𝐀) = 2. 

Now find the minors: 

𝑀𝑀11 = �1 −1
0 2 � = 2;    𝑀𝑀12 = �0 −1

0 2 � = 0;   𝑀𝑀13 = �0 1
0 0� = 0 

𝑀𝑀21 = �2 0
0 2� = 4;    𝑀𝑀22 = �1 0

0 2� = 2;   𝑀𝑀23 = �1 2
0 0� = 0 

𝑀𝑀31 = �2 0
1 −1� = −2;    𝑀𝑀22 = �1 0

0 −1� = −1;   𝑀𝑀23 = �1 2
0 1� = 1 

Hence the matrix of minors is: 

𝐌𝐌 = �
2 0 0
4 2 0
−2 −1 1

� 

The matrix of cofactors is equal to the matrix of minors but changing sign of the terms with odd (𝑖𝑖 +
𝑗𝑗) i.e. a chessboard-like pattern of signs: 

𝐂𝐂 = �
𝑀𝑀11 −𝑀𝑀12 𝑀𝑀13
−𝑀𝑀21 𝑀𝑀22 −𝑀𝑀23
−𝑀𝑀31 −𝑀𝑀32 𝑀𝑀33

� = �
2 −0 0
−4 2 −0
−2 +1 1

� 

Finally, we just need to transpose this matrix, and divide by the determinant: 

𝐀𝐀−1 =
𝐂𝐂𝑇𝑇

det (𝐀𝐀)
=

1
2
�

2 0 0
−4 2 0
−2 1 1

�
T

=
1
2
�

2 −4 −2
0 2 1
0 0 1

� = �
1 −2 −1
0 1 1/2
0 0 1/2

� 

We can always check if this is the inverse by doing the multiplication: 

𝐀𝐀−𝟏𝟏𝐀𝐀 = �
1 −2 −1
0 1 1/2
0 0 1/2

��
1 2 0
0 1 −1
0 0 2

� = �
1 0 0
0 1 0
0 0 1

� 

𝐀𝐀𝐀𝐀−𝟏𝟏 = �
1 2 0
0 1 −1
0 0 2

��
1 −2 −1
0 1 1/2
0 0 1/2

� = �
1 0 0
0 1 0
0 0 1

� 
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2) Find the inverse matrix for 𝐀𝐀 = �
1 1 0
1 1 1
0 1 1

� 

Solution: 

First find the determinant: this one is a particularly easy matrix. Add the 3 positive and 3 negative 
diagonals: 

det(𝐀𝐀) = 1 + 0 + 0 − 0 − 1 − 1 = −1. 

Now find the minors: 

𝑀𝑀11 = �1 1
1 1� = 0;    𝑀𝑀12 = �1 1

0 1� = 1;   𝑀𝑀13 = �1 1
0 1� = 1 

𝑀𝑀21 = �1 0
1 1� = 1;    𝑀𝑀22 = �1 0

0 1� = 1;   𝑀𝑀23 = �1 1
0 1� = 1 

𝑀𝑀31 = �1 0
1 1� = 1;    𝑀𝑀22 = �1 0

1 1� = 1;   𝑀𝑀23 = �1 1
1 1� = 0 

Hence the matrix of minors is: 

𝐌𝐌 = �
0 1 1
1 1 1
1 1 0

� 

The matrix of cofactors is equal to the matrix of minors but changing sign of the terms with odd (𝑖𝑖 +
𝑗𝑗) : 

𝐂𝐂 = �
𝑀𝑀11 −𝑀𝑀12 𝑀𝑀13
−𝑀𝑀21 𝑀𝑀22 −𝑀𝑀23
−𝑀𝑀31 −𝑀𝑀32 𝑀𝑀33

� = �
0 −1 1
−1 1 −1
1 −1 0

� 

Finally, we just need to transpose this matrix, and divide by the determinant: 

𝐀𝐀−1 =
𝐂𝐂𝑇𝑇

det (𝐀𝐀)
=

1
−1

�
0 −1 1
−1 1 −1
1 −1 0

�
T

= �
0 1 −1
1 −1 1
−1 1 0

� 

Finally, we can always check if this is the inverse by doing the multiplication: 

𝐀𝐀−𝟏𝟏𝐀𝐀 = �
0 1 −1
1 −1 1
−1 1 0

��
1 1 0
1 1 1
0 1 1

� = �
1 0 0
0 1 0
0 0 1

� 

𝐀𝐀𝐀𝐀−𝟏𝟏 = �
1 1 0
1 1 1
0 1 1

��
0 1 −1
1 −1 1
−1 1 0

� = �
1 0 0
0 1 0
0 0 1

� 

 

 

The algorithm becomes very tedious for 𝑁𝑁 = 4 and becomes impractical for even higher dimensions. 

In real life, no-one uses the inverse to solve a system 𝐀𝐀𝐱𝐱 = 𝐛𝐛 → 𝐱𝐱 = 𝐀𝐀−1𝐛𝐛. We will study a practical 
method in the next chapter.  
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INVERSE OF UNITARY (ORTHOGONAL) MATRICES 

In chapter 2.1 we saw that unitary matrices (those matrices whose linear transformation does not 
change lengths nor angles) have a very easy to calculate inverse: 

 

As we also saw, if a unitary matrix is purely real, then it is called an orthogonal matrix, and its inverse 
is simply its transpose! 

 

 

3) Example: Calculate the inverse of the matrix 𝐀𝐀 = 1
√2
�

1 1 0
𝑖𝑖 −𝑖𝑖 0
0 0 √2

� 

Solution: Notice that the columns of 𝐀𝐀 form an orthonormal set: � 1
√2

(1, 𝑖𝑖, 0), 1
√2

(1, 𝑖𝑖, 0)� =

� 1
√2

(1,−𝑖𝑖, 0), 1
√2

(1,−𝑖𝑖, 0)� = ⟨(0,0,1), (0,0,1)⟩ = 1  

� 1
√2

(1, 𝑖𝑖, 0), 1
√2

(1,−𝑖𝑖, 0)� = � 1
√2

(1, 𝑖𝑖, 0), (0,0,1)� = � 1
√2

(1,−𝑖𝑖, 0), (0,0,1)� = 0.  

So we are lucky! This is a unitary matrix, and therefore its inverse is simply its Hermitian conjugate: 

𝐀𝐀−1 = 𝐀𝐀† =
1
√2

�
1 −𝑖𝑖 0
1 𝑖𝑖 0
0 0 √2

� 

 

4) Calculate the inverse transformation of 𝐀𝐀 = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 �.  

Solution: 

We can see that the two columns of the matrix are orthonormal vectors: 

��cos𝜃𝜃
sin𝜃𝜃� , �− sin𝜃𝜃

cos𝜃𝜃 �� = 0;  

 ��cos𝜃𝜃
sin𝜃𝜃� , �cos𝜃𝜃

sin𝜃𝜃�� =  ��− sin𝜃𝜃
cos𝜃𝜃 � , �− sin𝜃𝜃

cos𝜃𝜃 �� = sin2 𝜃𝜃 + cos2 𝜃𝜃 = 1 

Therefore, 𝐀𝐀 is an orthogonal matrix, and so by definition its inverse is simply its transpose: 

𝐀𝐀−1 = 𝐀𝐀T = � cos𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos𝜃𝜃�;  

Indeed: 𝐀𝐀−1𝐀𝐀 = � cos𝜃𝜃 sin𝜃𝜃
− sin𝜃𝜃 cos𝜃𝜃� �

cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 � =

� cos2 𝜃𝜃 + sin2 𝜃𝜃 − cos𝜃𝜃 sin𝜃𝜃 + cos𝜃𝜃 sin𝜃𝜃
− cos𝜃𝜃 sin𝜃𝜃 + cos𝜃𝜃 sin𝜃𝜃 cos2 𝜃𝜃 + sin2 𝜃𝜃

� = �1 0
0 1� = 𝐈𝐈 

 

𝐀𝐀 is a unitary matrix ⟺ Columns of 𝐀𝐀 form an orthonormal set ⟺ 𝐀𝐀−1 = 𝐀𝐀† 

 

 

𝐀𝐀 is an orthogonal matrix ⟺ Columns of 𝐀𝐀 form a purely real orthonormal set ⟺ 𝐀𝐀−1 = 𝐀𝐀T 
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B. CASES WITH NO INVERSE: SINGULAR MATRICES 

Trivial example: the transformation 𝐀𝐀 = 𝟎𝟎 has no inverse 

Consider the 1D transformation given by 𝑣𝑣 = 𝑎𝑎𝑎𝑎 with 𝑎𝑎 = 0. This transformation collapses the entire 
number line into the origin. Given an output 𝑣𝑣 = 0, we have no idea what the input was. This 
transformation has no inverse. Indeed, we cannot divide both sides by 𝑎𝑎 because 𝑎𝑎 = 0. 

The solution to 𝑣𝑣 = 0𝑎𝑎 = 0 is that 𝑎𝑎 = 𝜆𝜆, for any value of 𝜆𝜆. 

The solution to 𝑣𝑣 = 0𝑎𝑎 = 2 is that there are no solutions. NO possible input 𝑎𝑎 gives 𝑣𝑣 = 0𝑎𝑎 = 2. 

This 1D scenario extends nicely to N-dimensions, when 𝐯𝐯 = 𝐀𝐀𝐱𝐱 and 𝐀𝐀 = 𝟎𝟎. 

In higher number of dimensions, there are more interesting possibilities for transformations with no 
inverse. 

 

When det(𝐀𝐀) = 0 the matrix has no inverse. There exists no matrix 𝐀𝐀−1 such that 𝐀𝐀−𝟏𝟏𝐀𝐀 = 𝐈𝐈. 

A matrix 𝐀𝐀 with det(𝐀𝐀) = 0 is called a singular matrix. 

Such transformations always map the input N-dimensional space into a subspace of dimension lower 
than N, therefore, they always map an entire subspace of the input into the origin. 

 

Example - Projection of 2D space into the x-axis:  

𝐀𝐀 = �1 0
0 0� → det𝐀𝐀 = 0 

 Solve 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = �3
0� and 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = �2

1� for 𝐱𝐱. 

Let’s solve the equation 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = �3
0� for 𝐱𝐱.  

There is no inverse transformation, because there are infinite possible input values. 

In this example, the infinite valid solutions to the problem 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = �3
0�  form a line: 

𝐱𝐱 = �3
0� + 𝜆𝜆 �0

1� is a line, the solution has 1 degree of freedom 

 

Notice something: the second term of the solution 𝜆𝜆𝐧𝐧 is exactly the solution of the “homogeneous 
system” 𝐀𝐀𝐱𝐱 = 0 (i.e. when the output 𝐯𝐯 = 𝟎𝟎 is in the origin). 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.3 (7) 

 

Now let’s try to solve 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = (2,1)𝑻𝑻. This has no solutions because 𝐯𝐯 is not inside the space of 
allowed outputs of the transformation. 

 

 

 

Example - projection of 3D space into the x-axis: 

𝐀𝐀 = �
1 0 0
0 0 0
0 0 0

� → det𝐀𝐀 = 0 

 Solve 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = (3,0,0)𝑇𝑇 for 𝐱𝐱. 

Let’s solve the problem 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = (3,0,0)𝑇𝑇. What are the input vectors 𝐱𝐱 which get projected onto 𝐯𝐯?  

 

𝐱𝐱 = �
3
0
0
� + 𝜆𝜆 �

0
1
0
� + 𝜇𝜇 �

0
0
1
�

���������
infinite plane

   The solution has 2 degrees of freedom. 

The range of possible outputs is a line, it has 1 degree of freedom. 

Once again, notice that the term 𝜆𝜆𝐲𝐲� + 𝜇𝜇𝐳𝐳� is exactly the solution to the homogeneous equation 𝐯𝐯 =
𝐀𝐀𝐱𝐱 = 𝟎𝟎. Not a coincidence! 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.3 (8) 

Example: Projection of 3D space into 𝒛𝒛 = 𝟎𝟎 plane: 

𝐀𝐀 = �
1 0 0
0 1 0
0 0 0

� → det𝐀𝐀 = 0 

 Solve 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = (3,−2,0)𝑇𝑇 for 𝐱𝐱. 

Let’s solve the problem 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = (3,−2,0)𝑇𝑇. 

 

𝐱𝐱 = �
3
−2
0
� + 𝜆𝜆 �

0
0
1
�

���
infinite line

   The solution has 1 degree of freedom. 

The range of possible outputs is a plane, it has 2 degrees of freedom. 
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C. RANGE AND NULL SPACE OF A TRANSFORMATION 

There is a beautiful pattern hidden in the previous examples!  

This figure and table (explained in the next page) summarizes the general case: 

 

 

 

 

 

Name of space/subspace Dimension Span 
Input space 𝑁𝑁 span{𝐞𝐞1,⋯ , 𝐞𝐞𝑁𝑁} basis vectors of input space 
Range of 𝐀𝐀 or Column Space of 𝐀𝐀 rank(𝐀𝐀) span{𝒜𝒜(𝐞𝐞1),⋯ ,𝒜𝒜(𝐞𝐞𝑁𝑁)} columns of matrix 
Null Space of 𝐀𝐀 nullity(𝐀𝐀) span{𝐱𝐱1,⋯ , 𝐱𝐱Nullity} vector solutions to 𝐀𝐀𝐱𝐱 = 𝟎𝟎 

 

Theorem of dimensions:  rank(𝐀𝐀) = 𝑁𝑁 − nullity(𝐀𝐀) 

 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.3 (10) 

RANGE (OR COLUMN SPACE) OF 𝐀𝐀: 

The transformation 𝐀𝐀 will map the input vector space into a subspace of the output vector space, 
which may be the entire space. This subspace is called the range of 𝐀𝐀. It is also called the column 
space of 𝐀𝐀, because it is the subspace spanned by the columns of 𝐀𝐀. This is because the transformed 
vectors 𝐀𝐀𝐱𝐱 for every possible 𝐱𝐱 can be written as: 

𝐀𝐀𝐱𝐱 = �
| |  |

𝒜𝒜(𝐞𝐞1) 𝒜𝒜(𝐞𝐞2) … 𝒜𝒜(𝐞𝐞𝑁𝑁)
| |  |

��

𝑎𝑎1
𝑎𝑎2
⋮
𝑎𝑎𝑁𝑁

� = 𝑎𝑎1𝒜𝒜(𝐞𝐞1) + 𝑎𝑎2𝒜𝒜(𝐞𝐞2) + ⋯+ 𝑎𝑎𝑁𝑁𝒜𝒜(𝐞𝐞𝑁𝑁) 

= span{𝒜𝒜(𝐞𝐞1),𝒜𝒜(𝐞𝐞2),⋯ ,𝒜𝒜(𝐞𝐞𝑁𝑁)} for any possible 𝐱𝐱. 

 

 

If the columns are linearly independent, rank(𝐀𝐀) = 𝑁𝑁, and the matrix is said to have full rank. This 
happens only when det(𝐀𝐀) ≠ 0. 

 

NULL SPACE OF 𝐀𝐀: 

If the transformation 𝐀𝐀 is singular, there will exist a subspace of the input vector space which is 
mapped to 𝟎𝟎. This is called the null space of 𝐀𝐀. 

The null space is the set of solutions for 𝐱𝐱 to the equation 𝐀𝐀𝐱𝐱 = 0. 

 

 

 

 

THEOREM OF DIMENSIONS: 

 

Name of space/subspace Dimension Span 
Input space 𝑁𝑁 span{𝐞𝐞1,⋯ , 𝐞𝐞𝑁𝑁} basis vectors of input space 
Range of 𝐀𝐀 or Column Space of 𝐀𝐀 rank(𝐀𝐀) span{𝒜𝒜(𝐞𝐞1),⋯ ,𝒜𝒜(𝐞𝐞𝑁𝑁)} columns of matrix 
Null Space of 𝐀𝐀 nullity(𝐀𝐀) span{𝐳𝐳1,⋯ , 𝐳𝐳Nullity} vector solutions to 𝐀𝐀𝐱𝐱 = 𝟎𝟎 

  

Range of 𝐀𝐀 = span{𝒜𝒜(𝐞𝐞1),𝒜𝒜(𝐞𝐞2),⋯ ,𝒜𝒜(𝐞𝐞𝑁𝑁)} where 𝒜𝒜(𝐞𝐞𝑖𝑖) are the columns of 𝐀𝐀, of 
which some may be redundant in terms of their span. 

The dimension of the range of 𝐀𝐀 is called the rank of 𝐀𝐀. 

 

Null space = span�𝐳𝐳1, 𝐳𝐳2,⋯ , 𝐳𝐳Nullity� where {𝐳𝐳𝑖𝑖} are linearly independent vectors that map 
to zero:  𝐀𝐀𝐳𝐳𝑖𝑖 = 𝟎𝟎 

The dimension of the null space of 𝐀𝐀 is called the nullity of 𝐀𝐀. 

 

Theorem of dimensions:  rank(𝐀𝐀) = 𝑁𝑁 − nullity(𝐀𝐀) 
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The null space 𝐀𝐀𝐱𝐱 = 𝟎𝟎 is very useful when solving the inverse problem 𝐀𝐀𝐱𝐱 = 𝐯𝐯: 

 

Proof: 𝒜𝒜�𝐱𝐱1 + Null space(𝐀𝐀)� = 𝒜𝒜(𝐱𝐱1)���
𝐯𝐯

+ 𝒜𝒜�Null space(𝐀𝐀)��������������
𝟎𝟎

= 𝐯𝐯 

Non-singular square matrix (det(𝐀𝐀) ≠ 0): 

For a non-singular matrix, Null space(𝐀𝐀) = 𝟎𝟎, so solutions 𝐀𝐀𝐱𝐱 = 𝐯𝐯 are unique. 

Every input is mapped to a single output. That is why there exists an inverse. 

 

 

Singular square matrix (det(𝐀𝐀) = 0): 

For a singular matrix, full subspaces of the input are squashed into a single output 

 

𝐀𝐀𝐱𝐱 = 𝐯𝐯𝟏𝟏 → Solution: 𝐱𝐱 = 𝐱𝐱1 + null space(𝐀𝐀) (infinite solutions) 
𝐀𝐀𝐱𝐱 = 𝐯𝐯𝟐𝟐 → No solution for 𝐱𝐱 (because 𝐯𝐯𝟐𝟐 is outside the range) 

If we find a solution 𝐱𝐱𝟏𝟏 such that 𝒜𝒜(𝐱𝐱1) = 𝐯𝐯 
then the set of vectors 𝐱𝐱1 + Null space(𝐀𝐀) are all a solution too, due to linearity. 
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5) Projection of 2D space into the x-axis:  

𝐀𝐀 = �1 0
0 0� 

State the range, null space, rank and nullity of this transformation. Check that the theorem of 
dimensions is fulfilled. 

Hence, Solve 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = �3
0� and 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = �2

1� for 𝐱𝐱. 

Range: the span of the columns: since the second column is zero it does not contribute to the span. 

range(𝐀𝐀) = span ��1
0� , �0

0�� = span ��1
0�� 

Alternatively, we can write it in vector parametric form: range(𝐀𝐀) = 𝜆𝜆 �1
0� 

Rank is the dimension of the range: 

rank(𝐀𝐀) = 1 

Null space: Solve the matrix equation 𝐀𝐀𝐱𝐱 = �0
0� 

�1 0
0 0� �

𝑎𝑎1
𝑎𝑎2� = �0

0�   →    � 𝑎𝑎1 + 0𝑎𝑎2 = 0
0𝑎𝑎1 + 0𝑎𝑎2 = 0 

𝑎𝑎2 is a free variable. The general solution is: 𝑎𝑎2 = 𝜆𝜆 and 𝑎𝑎1 = 0, which we can write in parametric 

form as �
𝑎𝑎1
𝑎𝑎2� = 𝜆𝜆 �0

1�. 

So that: 

null space(𝐀𝐀) = 𝜆𝜆 �0
1� = span ��0

1�� 

Nullity is the dimension of the null space: 

nullity(𝐀𝐀) = 1 

The theorem of dimensions is fulfilled: Input space dimension = 2; rank = 1; nullity = 1. 

a) Solve 𝐀𝐀𝐱𝐱 = �3
0� 

�1 0
0 0� �

𝑎𝑎1
𝑎𝑎2� = �3

0�  →    � 𝑎𝑎1 + 0𝑎𝑎2 = 3
0𝑎𝑎1 + 0𝑎𝑎2 = 0    →    𝐱𝐱 = �

𝑎𝑎1
𝑎𝑎2� = �3

0� + 𝜆𝜆 �0
1����

Null space

      

as expected, the null-space can be added to any valid solution. 

b) Solve 𝐀𝐀𝐱𝐱 = �2
1� 

�2
1� is outside the range, so the system does not have a solution. 
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6) Projection of 3D space into the x-axis: 

𝐀𝐀 = �
1 0 0
0 0 0
0 0 0

� → det𝐀𝐀 = 0 

State the range, null space, rank and nullity of this transformation. Check that the theorem of 
dimensions is fulfilled. 

Hence, solve 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = (3,0,0)𝑇𝑇 for 𝐱𝐱. 

Range: the span of the columns: since the second and third columns are zero they do not contribute 
to the span. 

range(𝐀𝐀) = span ��
1
0
0
� ,�

0
0
0
� ,�

0
0
0
�� = span ��

1
0
0
�� 

Alternatively, we can write it in vector parametric form: range(𝐀𝐀) = 𝜆𝜆 �
1
0
0
� 

Rank is the dimension of the range: 

rank(𝐀𝐀) = 1 

Null space: Solve the matrix equation 𝐀𝐀𝐱𝐱 = �
0
0
0
� 

�
1 0 0
0 0 0
0 0 0

��
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = �

0
0
0
�   →    �

𝑎𝑎1 = 0
0 = 0
0 = 0

 

𝑎𝑎2 and 𝑎𝑎3 are free variables. The general solution is: 𝑎𝑎2 = 𝜆𝜆, 𝑎𝑎3 = 𝜇𝜇 and 𝑎𝑎1 = 0, which we can write 
in parametric form as: 

𝐱𝐱 = �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = 𝜆𝜆 �

0
1
0
� + 𝜇𝜇 �

0
0
1
� 

So that: 

null space(𝐀𝐀) = 𝜆𝜆 �
0
1
0
� + 𝜇𝜇 �

0
0
1
� = span ��

0
1
0
� ,�

0
0
1
�� 

Nullity is the dimension of the null space: 

nullity(𝐀𝐀) = 2 

The theorem of dimensions is fulfilled: Input space dimension = 3; rank = 1; nullity = 2. 
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Projection of 3D space onto the x-axis: 

𝐀𝐀 = �
1 0 0
0 0 0
0 0 0

� 

 

a) Solve 𝐀𝐀𝐱𝐱 = �
3
0
0
� 

�
1 0 0
0 0 0
0 0 0

��
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = �

3
0
0
�  →    �𝑎𝑎1 = 3

0 = 0    →     𝑎𝑎2 and 𝑎𝑎3 are free parameters.   

𝐱𝐱 = �
3
0
0
� + 𝜆𝜆 �

0
1
0
� + 𝜇𝜇 �

0
0
1
�

���������
null space

 

as expected, the null-space can be added to any valid solution. 
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7) Projection of 3D space into 𝒛𝒛 = 𝟎𝟎 plane: 

𝐀𝐀 = �
1 0 0
0 1 0
0 0 0

� → det𝐀𝐀 = 0 

State the range, null space, rank and nullity of this transformation. Check that the theorem of 
dimensions is fulfilled. 

Hence, solve 𝐯𝐯 = 𝐀𝐀𝐱𝐱 = (3,−2,0)𝑇𝑇 for 𝐱𝐱. 

Range: the span of the columns: since the third column is zero only the first two contribute to the 
span. 

range(𝐀𝐀) = span ��
1
0
0
� ,�

0
1
0
� ,�

0
0
0
�� = span ��

1
0
0
� ,�

0
1
0
�� 

Alternatively, we can write it in vector parametric form: range(𝐀𝐀) = 𝜆𝜆 �
1
0
0
� + 𝜇𝜇 �

0
1
0
� 

Rank is the dimension of the range: 

rank(𝐀𝐀) = 2 

Null space: Solve the matrix equation 𝐀𝐀𝐱𝐱 = �
0
0
0
� 

�
1 0 0
0 1 0
0 0 0

��
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = �

0
0
0
�   →    �

𝑎𝑎1 = 0
𝑎𝑎2 = 0
0 = 0

 

𝑎𝑎3 is a free variable. The general solution is: 𝑎𝑎3 = 𝜆𝜆, 𝑎𝑎2 = 0 and 𝑎𝑎1 = 0, which we can write in 
parametric form as: 

𝐱𝐱 = �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = 𝜆𝜆 �

0
0
1
� 

So that: 

null space(𝐀𝐀) = 𝜆𝜆 �
0
0
1
� = span ��

0
0
1
�� 

Nullity is the dimension of the null space: 

nullity(𝐀𝐀) = 1 

The theorem of dimensions is fulfilled: Input space dimension = 3; rank = 2; nullity = 1. 
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Visually we can understand: Projection of 3D space onto the plane 𝑧𝑧 = 0: 

𝐀𝐀 = �
1 0 0
0 1 0
0 0 0

� 

 

a) Solve 𝐀𝐀𝐱𝐱 = �
3
−2
0
� 

�
1 0 0
0 1 0
0 0 0

��
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = �

3
−2
0
�  →    �

𝑎𝑎1 = 3
𝑎𝑎2 = −2

0 = 0
   →     𝑎𝑎3 is a free parameter.   

𝐱𝐱 = �
3
−2
0
� + 𝜆𝜆 �

0
0
1
�

���
null space

 

 

as expected, the null-space can be added to any valid solution. 
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8) Problem: Consider the transformation given by the matrix 𝐀𝐀 = �1 −2
2 −4�. Write down the 

input space, range and the null space of this matrix, state their dimensions, and check the 
theorem of dimensions. Draw all subspaces in the 2D plane. Solve 𝐀𝐀𝐱𝐱 = 𝐯𝐯 for the cases: 

(a) 𝐯𝐯 = (−1,2)𝑻𝑻 
(b) 𝐯𝐯 = (−1,−2)𝑻𝑻 

Solution: 

The input space of this transformation is 2D space, with dimensions 𝑁𝑁 = 2. 

The range, or column space, of this matrix is the subspace of all possible outputs of this 
transformation and is given by the span of its columns. It is evident that the two column vectors are 
parallel, so they are linearly dependent: 

range(𝐀𝐀) = span ��1
2� , �−2

−4�� = span ��1
2��   →   rank(𝐀𝐀) = dim[range(𝐀𝐀)] = 1 

The range of 𝐀𝐀 is therefore the one-dimensional line given by 𝐱𝐱 = 𝜆𝜆(1,2)𝑇𝑇. The transformation 
compresses the entire 2D space into this line! Indeed det(𝐀𝐀) = 0. 

The null space of this matrix is the subspace of all possible solutions to the equation 𝐀𝐀𝐱𝐱 = 𝟎𝟎. 

�1 −2
2 −4� �

𝑎𝑎1
𝑎𝑎2� = �0

0� 

This can be written as a system of equations: 

� 𝑎𝑎1 − 2𝑎𝑎2 = 0
2𝑎𝑎1 − 4𝑎𝑎2 = 0 

Subtracting twice the first from the second leads to 0 = 0, therefore we have one degree of 
freedom in the solution: 𝑎𝑎2 = 𝜆𝜆 and 𝑎𝑎1 = 2𝜆𝜆. Writing this in vector form, the solution is: 

𝐱𝐱 = λ �2
1� 

This is the subspace of solutions to 𝐀𝐀𝐱𝐱 = 𝟎𝟎, and therefore is the null space of the matrix. 

null space(𝐀𝐀) = span ��2
1��   →   nullity(𝐀𝐀) = dim[null space(𝐀𝐀)] = 1 

 

The null space tells us about the direction in which the space is being “squashed” into the origin, and 
it will help us a lot for solving the inverse problem. 
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The theorem of dimensions is fulfilled, as rank(𝐀𝐀) = N − nullity(𝐀𝐀). 

a) Solve 𝐀𝐀𝐱𝐱 = (−1,2)𝑻𝑻 

This value of 𝐯𝐯 falls outside the range of 𝐀𝐀, therefore there are no solutions! 

 

b) Solve 𝐀𝐀𝐱𝐱 = (−1,−2)𝑻𝑻 

This value of 𝐯𝐯 falls inside the range of 𝐀𝐀, so we can find at least one solution, and then add the null 
space as a degree of freedom. 

�1 −2
2 −4� �

𝑎𝑎1
𝑎𝑎2� = �−1

−2� → � 𝑎𝑎1 − 2𝑎𝑎2 = −1
2𝑎𝑎1 − 4𝑎𝑎2 = −2 

We know we have one degree of freedom, so take 𝑎𝑎2 = 𝜆𝜆, therefore we can solve 𝑎𝑎1 = −1 + 2𝜆𝜆. 

In vector form: 𝐱𝐱 = �−1
0 �+ 𝜆𝜆 �2

1� 

 

It is very difficult to interpret this transformation in “visual” terms, because it is not a projection. 
However, it does squish whole lines (always parallel to the null space) into single points somewhere 

along the line of the range. 
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D. NULL SPACE AND RANGE USING GAUSSIAN ELIMINATION 

The simplest and most efficient way of calculating the range and null-space of matrices is by using 
Gaussian Elimination. This technique is thoroughly explained in the next chapter. Once you learn it, 
you can come back here to do these problems: 

 

NULL SPACE: 

To obtain the null space we can, by definition, simply solve the system 𝐀𝐀𝐱𝐱 = 𝟎𝟎.  

 

 

RANGE: 

To obtain the range we need to find the span of all the columns. For this we need to check if the 
columns are linearly dependent or independent.  
 

 

Gaussian elimination of 𝐀𝐀𝐱𝐱 = 𝟎𝟎 will tell us which columns of the original matrix where linearly 
dependent on the others (columns with no pivot). The range will be equal to the span of the 
columns in the original matrix whose corresponding columns in row echelon form had pivots: 

 

 

 

  

Null space{𝐀𝐀} = General solution to system 𝐀𝐀𝐱𝐱 = 𝟎𝟎 

Gaussian elimination will tell us which variables are free (dimensions of the null space). 
The free variables correspond to the columns with no pivot in row echelon form. 

Nullity{𝐀𝐀} = Number of columns without pivot in row echelon form 𝐔𝐔 

 

Columns of  𝐀𝐀 
{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁} are 

linearly independent 
⟺ ∑𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖 = 0 

Only when all 𝑎𝑎𝑖𝑖 = 0 ⟺ 𝐀𝐀𝐱𝐱 = 𝟎𝟎 
has unique solution 𝐱𝐱 = 𝟎𝟎 

 

 

Range{𝐀𝐀} = span of the columns in 𝐀𝐀 that have pivot in the row echelon form 𝐔𝐔 

Rank{𝐀𝐀} = Number of columns with pivot in row echelon form 𝐔𝐔 
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9) Find the range, rank, null space and nullity of the following matrix: 

𝐀𝐀 = �
1 −2 −1
2 −4 2
−1 2 1

� 

Solution: 

First, let’s find the null space of 𝐀𝐀 by solving 𝐀𝐀𝐱𝐱 = 𝟎𝟎.  

The augment matrix for the system 𝐀𝐀𝐱𝐱 = 𝟎𝟎 is written as: 

�
1 −2 −1
2 −4 2
−1 2 1

   �   
0
0
0
� 

Now we perform Gaussian elimination to reduce this matrix into row echelon form: 

�
1 −2 −1
2 −4 2
−1 2 1

   �   
0
0
0
�
𝑅𝑅2−2𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯�
𝑅𝑅3+𝑅𝑅1→𝑅𝑅3

�
1 −2 −1
0 0 4
0 0 0

   �   
0
0
0
� 

The first column and third columns have pivot. The second column has no pivot and thus 
corresponds to free variables. The general solution, by inverse substitution, is therefore: 

𝑎𝑎2 = 𝛼𝛼 

𝑎𝑎3 = 0 

𝑎𝑎1 − 2(𝛼𝛼) − (0) = 0 →     𝑎𝑎1 = 2𝛼𝛼 

Which can be written as: 

𝐱𝐱 = �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = 𝛼𝛼 �

1
1
0
� 

Therefore: 

null space{𝐀𝐀} = span ��
1
1
0
��  

a one-dimensional space. The nullity, being the dimension of the null space, is therefore: 

nullity{𝐀𝐀} = 1 

Now, let’s find the range. The range is equal to the span of the columns. But the columns which had 
no pivots after gaussian elimination do not contribute to the span of the columns. So, we can take 
the first and third column in the original matrix: 

In summary, the range is always given by the span of the columns in the original matrix 
corresponding to the columns that have pivots in the row-echelon form: 

range{𝐀𝐀} = span ��
1
2
−1

� ,�
−1
2
1
��  

Which is a two-dimensional subspace, hence: 

rank{𝐀𝐀} = 2 

The theorem of dimensions is fulfilled. Input dimension 𝑁𝑁 = 3. Rank = 2. Nullity= 1. 
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10) Find the range, rank, null space and nullity of the following matrix: 

𝐀𝐀 = �
2 −4 −2
1 −2 −1
−2 4 2

� 

Solution: 

First, let’s find the null space of 𝐀𝐀 by solving 𝐀𝐀𝐱𝐱 = 𝟎𝟎.  

The augment matrix for the system 𝐀𝐀𝐱𝐱 = 𝟎𝟎 is written as: 

�
2 −4 −2
1 −2 −1
−2 4 2

   �   
0
0
0
� 

Now we perform Gaussian elimination to reduce this matrix into row echelon form: 

�
2 −4 −2
1 −2 −1
−2 4 2

   �   
0
0
0
�
𝑅𝑅2−�

1
2
�𝑅𝑅1→𝑅𝑅2

�⎯⎯⎯⎯⎯⎯⎯⎯⎯�
𝑅𝑅3+𝑅𝑅1→𝑅𝑅3

�
2 −4 −2
0 0 0
0 0 0

   �   
0
0
0
� 

The first column has pivot. The two last columns have no pivot and thus correspond to free 
variables. The general solution, by inverse substitution, is therefore: 

𝑎𝑎3 = 𝛼𝛼 

𝑎𝑎2 = 𝛽𝛽 

2𝑎𝑎1 − 4𝛽𝛽 − 2𝛼𝛼 = 0 →     𝑎𝑎1 = 𝛼𝛼 + 2𝛽𝛽 

Which can be written as: 

𝐱𝐱 = �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = 𝛼𝛼 �

1
0
1
� + 𝛽𝛽 �

2
1
0
� 

Therefore: 

null space{𝐀𝐀} = span ��
1
0
1
� ,�

2
1
0
��  

a two-dimensional space. The nullity, being the dimension of the null space, is therefore: 

nullity{𝐀𝐀} = 2 

Now, let’s find the range. The range is equal to the span of the columns. But the columns which had 
no pivots after gaussian elimination do not contribute to the span of the columns.  

In summary, the range is always given by the span of the columns in the original matrix 
corresponding to the columns that had pivots in the row-echelon form: 

range{𝐀𝐀} = span ��
2
1
−2

��  

Which is a one-dimensional line, hence: 

rank{𝐀𝐀} = 1 

The theorem of dimensions is fulfilled. Input dimension 𝑁𝑁 = 3. Rank = 1. Nullity= 2. 
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11) Find the range, rank, null space and nullity of the following matrix. 

𝐀𝐀 = �
2 4 3
1 −2 −2
−3 3 2

� 

and solve the system 𝐀𝐀𝐱𝐱 = (4,0,−7)𝑇𝑇. 

Solution: 

First, let’s find the null space of 𝐀𝐀 by solving 𝐀𝐀𝐱𝐱 = 𝟎𝟎.  

The augment matrix for the system 𝐀𝐀𝐱𝐱 = 𝟎𝟎 is written as: 

�
2 4 3
1 −2 −2
−3 3 2

   �   
0
0
0
� 

Now we perform Gaussian elimination to reduce this matrix into row echelon form: 

�
2 4 3
1 −2 −2
−3 3 2

   �   
0
0
0
�
𝑅𝑅2−�

1
2
�𝑅𝑅1→𝑅𝑅2

�⎯⎯⎯⎯⎯⎯⎯⎯⎯�
𝑅𝑅3+�

3
2�𝑅𝑅1→𝑅𝑅3

�
2 4 3
0 −4 −7/2
0 9 13/2

   �   
0
0
0
� 

Let’s avoid fractions (this is optional but helps avoiding mistakes) by multiplying rows: 

2𝑅𝑅2→𝑅𝑅2�⎯⎯⎯⎯�
2𝑅𝑅3→𝑅𝑅3

�
2 4 3
0 −8 −7
0 18 13

  �   
0
0
0
� 

And now we continue with the steps to reduce into row echelon form: 

𝑅𝑅3+�
9
4
�𝑅𝑅2→𝑅𝑅3

�⎯⎯⎯⎯⎯⎯⎯⎯⎯� �
2 4 3
0 −8 −7
0 0 −11/4

   �   
0
0
0
� 

All the columns have pivots! Therefore, there are no free variables. Therefore the null space has no 
dimensions (it is only the origin). We can check this by doing inverse substitution and finding the 
general solution: 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 0. 

Therefore: 

null space{𝐀𝐀} = 𝟎𝟎  

a zero-dimensional space. The nullity, being the dimension of the null space, is therefore zero: 

nullity{𝐀𝐀} = 0 

Now, let’s find the range. Since all columns had pivots after gaussian elimination, we know that all 
the columns are linearly independent. The matrix has full-rank, and hence its range is simply the 
three dimensional span of its three linearly independent columns.  

In summary, the range is always given by the span of the columns in the original matrix 
corresponding to the columns that had pivots in the row-echelon form: 

range{𝐀𝐀} = span ��
2
1
−3

� ,�
4
−2
3
� ,�

3
−2
2
��  

Which is a three-dimensional space, hence: 

rank{𝐀𝐀} = 3 

The theorem of dimensions is fulfilled. Input dimension 𝑁𝑁 = 3. Rank = 3. Nullity = 0. 
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This matrix is full-rank, which means it has an inverse. We could use the inverse to solve the system 
𝐀𝐀𝐱𝐱 = (4,0,−7)𝑇𝑇. Alternatively, we can use gaussian elimination (we can reuse the same gaussian 
steps for the matrix! We just need to apply the steps to the independent term) 

�
2 4 3
1 −2 −2
−3 3 2

   �   
4
0
−7

�
𝑅𝑅2−�

1
2
�𝑅𝑅1→𝑅𝑅2

�⎯⎯⎯⎯⎯⎯⎯⎯⎯�
𝑅𝑅3+�

3
2�𝑅𝑅1→𝑅𝑅3

�
2 4 3
0 −4 −7/2
0 9 13/2

   �   
4
−2
−1

�
2𝑅𝑅2→𝑅𝑅2�⎯⎯⎯⎯�
2𝑅𝑅3→𝑅𝑅3

�
2 4 3
0 −8 −7
0 18 13

  �   
4
−4
−2

� 

𝑅𝑅3+�
9
4
�𝑅𝑅2→𝑅𝑅3

�⎯⎯⎯⎯⎯⎯⎯⎯⎯� �
2 4 3
0 −8 −7
0 0 −11/4

   �   
4
−4
−11

� 

Hence, solving by inverse substitution: 

3rd row: −11𝑎𝑎3 = −44 →   𝑎𝑎3 = 4 

2nd row: −8𝑎𝑎2 − 7(4) = −4 → 𝑎𝑎2 = 24
−8

= −3 

1st row: 2𝑎𝑎1 + 4(−3) + 3(4) = 4 →   𝑎𝑎1 = 2 

 

12) Find the range, rank, null space and nullity of the following non-rectangular matrix: 

𝐀𝐀 = �
1 1 0 −2
2 0 2 2
4 1 3 1

� 

Solution: This case is good practice because it is a non-rectangular matrix. Its input is 4-dimensional, 
while its output is 3-dimensional. Still, all the theory applies. The null space is a subspace of the input 
space which is mapped to zero in the output. The range is a subspace of the output space into which 
all the input space is mapped. 

First, let’s find the null space of 𝐀𝐀 by solving 𝐀𝐀𝐱𝐱 = 𝟎𝟎.  

The augment matrix for the system 𝐀𝐀𝐱𝐱 = 𝟎𝟎 is written as: 

�
1 1 0 −2
2 0 2 2
4 1 3 1

   �   
0
0
0
� 

Now we perform Gaussian elimination to reduce this matrix into row echelon form: 

�
1 1 0 −2
2 0 2 2
4 1 3 1

   �   
0
0
0
�
𝑅𝑅2−2𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯�
𝑅𝑅3−4𝑅𝑅1→𝑅𝑅3

�
1 1 0 −2
0 −2 2 6
0 −3 3 9

   �   
0
0
0
�
𝑅𝑅3−�

3
2
�𝑅𝑅2→𝑅𝑅3

�⎯⎯⎯⎯⎯⎯⎯⎯⎯� �
1 1 0 −2
0 −2 2 6
0 0 0 0

   �   
0
0
0
� 

Now we make our lives easier by dividing some rows by integer numbers to make numbers smaller: 

�
1
2
�𝑅𝑅2→𝑅𝑅2

�⎯⎯⎯⎯⎯⎯�
 

�
1 1 0 −2
0 −1 1 3
0 0 0 0

   �   
0
0
0
� 

Now we can solve the system by inverse substitution. The third and fourth column have no pivots, so 
they are free variables. The first two columns have pivot, so they are linearly independent columns. 

𝑎𝑎3 = 𝛼𝛼 and 𝑎𝑎4 = 𝛽𝛽 

2nd row: −𝑎𝑎2 + 𝛼𝛼 + 3𝛽𝛽 = 0  →    𝑎𝑎2 = 𝛼𝛼 + 3𝛽𝛽 

1st row: 𝑎𝑎1 + (𝛼𝛼 + 3𝛽𝛽)− 2𝛽𝛽 = 0 → 𝑎𝑎1 = −𝛼𝛼 − 𝛽𝛽 

So, the general solution to 𝐀𝐀𝐱𝐱 = 𝟎𝟎 is: 
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𝐱𝐱 = �

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4

� = 𝛼𝛼�

−1
1
1
0

� + 𝛽𝛽�

−1
3
0
1

� 

Which means that: 

null space{𝐀𝐀} = span��

−1
1
1
0

� ,�

−1
3
0
1

��  

This is a two-dimensional plane living in the input 4-dimensional space, therefore, the nullity, being 
the dimension of the null space: 

nullity{𝐀𝐀} = 2 

 

Next, we must find the range of 𝐀𝐀. The range is the span of the columns of 𝐀𝐀. However, some 
columns might not be contributing to the span (being linearly dependent on others). We can find out 
a set of columns that are linearly dependent thanks to Gaussian elimination. We saw that the third 
and fourth columns had no pivot, therefore, the 3rd and 4th columns can be written as a linear 
combination of the other two. The first two columns did have a pivot, therefore, they are linearly 
independent.  

In summary, we can find the range of 𝐀𝐀 by considering the span of the columns in the original 
matrix which had a pivot in the row echelon form after gaussian elimination: 

range{𝐀𝐀} = span ��
1
2
4
� ,�

1
0
1
��  

This is a two-dimensional subspace of the output three-dimensional space. The dimension of the 
range is two, hence: 

rank{𝐀𝐀} = 2 

The theorem of dimensions is fulfilled. Input dimension 𝑁𝑁 = 4. Rank = 2. Nullity= 2. 
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13) Find the range, rank, null space and nullity of the linear operation corresponding to 
differentiation with respect to 𝑎𝑎 in the vector space of polynomials of degree equal or smaller 
than 4, with the basis {1,𝑎𝑎, 𝑎𝑎2,𝑎𝑎3,𝑎𝑎4}. Check that the theorem of dimensions is obeyed. 

𝐀𝐀 = �

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

� 

This matrix was derived in a previous chapter. Its size is 4 × 5 because it converts polynomials 
of degree 4 (i.e. with 5 dimensions) into polynomials of degree 3 (i.e. with 4 dimensions). 

 

Solution: 

Remember that we are associating polynomials with vectors: 

𝐩𝐩 =

⎝

⎜
⎛

𝑎𝑎0
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4⎠

⎟
⎞
→ 𝑝𝑝(𝑎𝑎) = 𝑎𝑎0 + 𝑎𝑎1𝑎𝑎 + 𝑎𝑎2𝑎𝑎2 + 𝑎𝑎3𝑎𝑎3 + 𝑎𝑎4𝑎𝑎4 

First, let’s find the null space by solving 𝐀𝐀𝐩𝐩 = 𝟎𝟎. This will also allow us to find out which columns are 
linearly independent (the columns without pivot). 

𝐀𝐀𝐩𝐩 = �

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

�

⎝

⎜
⎛

𝑎𝑎0
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4⎠

⎟
⎞

= 𝟎𝟎 

Written as an augmented matrix, we have: 

�

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

   �   

0
0
0
0

� 

Now we would perform gaussian elimination to bring it into row echelon form. Fortunately, no steps 
are required because the matrix is already in row-echelon form, so we can directly read all the 
information from it. The first column does not have a pivot, and so is a free variable, and so it is 
linearly dependent on the other columns (this was obvious! It is all zeroes, so any other column 
scaled by zero results in this column!). The last 4 columns are linearly independent, because they all 
have pivots. 

By giving the first variable (no pivot) a free parameter 𝑎𝑎0 = 𝜆𝜆 we can solve the others by inverse 
substitution. The solution is trivial: 𝑎𝑎1 = 𝑎𝑎2 = 𝑎𝑎3 = 𝑎𝑎4 = 0. Therefore, the null space of 𝐀𝐀 is given 
by: 

null space(𝐀𝐀) = span

⎩
⎪
⎨

⎪
⎧

⎝

⎜
⎛

1
0
0
0
0⎠

⎟
⎞

⎭
⎪
⎬

⎪
⎫

= 𝜆𝜆

⎝

⎜
⎛

1
0
0
0
0⎠

⎟
⎞

 

Notice that the null space is a line living in the input 5-dimensional space. The nullity is equal to the 
dimensions of this space. Therefore, nullity of 𝐀𝐀 is 1. 
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The range of the matrix is the subspace given by the span of the columns. It is a subspace of the 
output space of the matrix, i.e. the range exists in the 4-dimensional output space. 

We know that the last 4 columns are linearly independent (because they had a pivot after Gaussian 
elimination), and the first column is linearly dependent on the others (because it didn’t have a pivot 
after Gaussian elimination), therefore we can write the range of the matrix as the span of the last 
four columns: 

range(𝐀𝐀) = span��

1
0
0
0

� ,�

0
1
0
0

� ,�

0
0
1
0

� ,�

0
0
0
1

�� = 𝛼𝛼�

1
0
0
0

� + 𝛽𝛽�

0
1
0
0

� + 𝛾𝛾 �

0
0
1
0

� + 𝛿𝛿 �

0
0
0
1

� 

This is a four-dimensional subspace, so its dimension is 4. The rank of 𝐀𝐀 is 4. Interestingly, the range 
of 𝐀𝐀 (non-square matrix) in this case is equal to the entire output 4-dimensional space. 

The theorem of dimensions is fulfilled. Input dimension 𝑁𝑁 = 5. Rank = 4. Nullity= 1. 

 

It is instructive to translate all these results into the language of polynomials (where it all becomes 
quite trivial). 

null space �
d

d𝑎𝑎
(4th order polynomials)� = span{1} = 𝑎𝑎0 

range �
d

d𝑎𝑎
(4th order polynomials)� = span{1,𝑎𝑎, 𝑎𝑎2,𝑎𝑎3} = 𝑏𝑏0 + 𝑏𝑏1𝑎𝑎 + 𝑏𝑏2𝑎𝑎2 + 𝑏𝑏3𝑎𝑎3 

 

14) Following the previous problem. Solve the indefinite integration of polynomials (which is the 
inverse of differentiation) by using vector notation and linear algebra techniques:  

𝑝𝑝(𝑎𝑎) = �(5 + 𝑎𝑎2)d𝑎𝑎   →   
d

d𝑎𝑎
(𝑝𝑝(𝑎𝑎)) = 5 + 𝑎𝑎2 

 

 

In the language of vectors, we are trying to solve: 

d
d𝑎𝑎

(𝑝𝑝(𝑎𝑎)) = 5 + 𝑎𝑎2    →       𝐀𝐀𝐩𝐩 = �

5
0
1
0

�        →    �

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

�

⎝

⎜
⎛

𝑎𝑎0
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4⎠

⎟
⎞

= �

5
0
1
0

� 

The augment matrix is already in row-echelon form, so we can solve it by inverse substitution: 

�

0 1 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 4

   �   

5
0
1
0

� 

𝑎𝑎0 = 𝑐𝑐 is a free parameter (null space); 𝑎𝑎1 = 5;  𝑎𝑎2 = 0; 𝑎𝑎3 = 1/3; 𝑎𝑎4 = 0. 

The general solution is therefore, in vector language, a line in 5-dimensional space: 
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⎝

⎜
⎛

𝑎𝑎0
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
𝑎𝑎4⎠

⎟
⎞

=

⎝

⎜
⎛

0
5
0

1/3
0 ⎠

⎟
⎞

+ 𝑐𝑐

⎝

⎜
⎛

1
0
0
0
0⎠

⎟
⎞

 

Which, translated to polynomial language, gives us the familiar: 

𝑝𝑝(𝑎𝑎) = 5𝑎𝑎 +
1
3
𝑎𝑎3 + 𝑐𝑐 

This is an explanation, in linear algebra terms, for why an indefinite integral (the inverse of the 
derivative) always has an arbitrary integration constant 𝑐𝑐! The linear transformation has a zero 
determinant, and so we must add the null space to any solution! 

 

Extra note: This also applies nicely to linear ordinary differential equations which can also be seen as 
a linear transformation.  

2
d2

d𝑎𝑎2
𝑝𝑝(𝑎𝑎) −

d
d𝑎𝑎

𝑝𝑝(𝑎𝑎) + 3𝑝𝑝(𝑎𝑎) = 𝑎𝑎2 

�2
d2

d𝑎𝑎2
−

d
d𝑎𝑎

+ 3�𝑝𝑝(𝑎𝑎) = 𝑎𝑎2 

𝒜𝒜�𝑝𝑝(𝑎𝑎)� = 𝑎𝑎2 

𝐀𝐀𝐩𝐩 = 𝐯𝐯 

You know from your study of differential equations, that the general solution is equal to the 
particular solution plus the homogeneous solution. The homogeneous solution is the solution to the 
system when the independent coefficients are zero, i.e. the homogeneous solution is the null space! 

𝐩𝐩 = 𝐩𝐩𝑃𝑃 + 𝐩𝐩𝐻𝐻 = 𝐩𝐩𝑃𝑃 + null space{𝐀𝐀} 

This is not an analogy or a coincidence. This is an exact equivalence. That is why some differential 
equations are called LINEAR differential equations and always fulfil the above. 
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2.4 LINEAR SYSTEMS OF EQUATIONS AND GAUSSIAN ELIMINATION 

 

Linear systems of equations are used very often in science and engineering when solving linear laws 
of physics, and equally often when simplifying non-linear equations using a linear approximation. 

 

A. LINEAR SYSTEM OF EQUATIONS AS A MATRIX-VECTOR MULTIPLICATION 

A linear system of equations is a collection of 𝑀𝑀 equations and 𝑁𝑁 unknowns, in which the unknowns 
(𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑁𝑁) appear as linear combinations with simple scaling coefficients (𝑎𝑎𝑖𝑖𝑖𝑖) and each equation 
has independent terms (𝑏𝑏𝑖𝑖). We can always write a linear system of equations as follows: 

�

𝑎𝑎11𝑥𝑥1 + 𝑎𝑎12𝑥𝑥2 + ⋯𝑎𝑎1𝑁𝑁𝑥𝑥𝑁𝑁 = 𝑏𝑏1
𝑎𝑎21𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯𝑎𝑎2𝑁𝑁𝑥𝑥𝑁𝑁 = 𝑏𝑏2

⋮
𝑎𝑎𝑀𝑀1𝑥𝑥1 + 𝑎𝑎𝑀𝑀2𝑥𝑥2 + ⋯𝑎𝑎𝑀𝑀𝑁𝑁𝑥𝑥𝑁𝑁 = 𝑏𝑏𝑀𝑀

 

This system can be written and interpreted as a simple matrix-vector multiplication 

�

𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑁𝑁
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑁𝑁
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑀𝑀1 𝑎𝑎𝑀𝑀2 … 𝑎𝑎𝑀𝑀𝑁𝑁

�

�����������������
𝐀𝐀

�

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑁𝑁

�

���
x

= �

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑀𝑀

�

���
𝐛𝐛

 

This means that, in order to solve the values of the variables, we need to find a vector 𝐱𝐱, which when 
transformed according to matrix 𝐀𝐀 results in a vector 𝐛𝐛. In other words, we need to solve the inverse 
problem 𝐀𝐀𝐱𝐱 = 𝐛𝐛. This means we can apply the results of the previous section. 

• When det(𝐀𝐀) ≠ 0, the system has a unique solution given by 𝐱𝐱 = 𝐀𝐀−1𝐛𝐛.  
• When det(𝐀𝐀) = 0, the system may have: 

o no solutions (when 𝐛𝐛 is outside the range of 𝐀𝐀) 
o infinite solutions with 𝑍𝑍 degrees of freedom (when 𝐛𝐛 is inside the range of 𝐀𝐀). 

 𝑍𝑍 = nullity(𝐀𝐀) 

In practice, calculating the inverse 𝐀𝐀−1 using the general recipe which involved determinants is a 
very long procedure, even for a computer (for high number of dimensions). In real-life, the inverse is 
never used. Instead, a much faster algorithm is used, called Gaussian elimination. 
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B. GAUSSIAN ELIMINATION 

Gaussian elimination is a very efficient and general way to solve a system of linear equations in all 
possible cases. It works for unique solutions, no solutions and infinite solutions. This method can 
also be used to find the rank of a matrix, the range of a matrix, the determinant of a matrix, and to 
calculate the inverse of an invertible square matrix. It is much faster than the usual methods. 

Using Gaussian elimination, computers can solve systems of equations with tens of thousands of 
variables and equations. 

To start solving the system 𝐀𝐀𝐱𝐱 = 𝐛𝐛, we write the matrix 𝐀𝐀 next to the vector 𝐛𝐛 in the same matrix, 
simply for convenience. This is called the augmented matrix 𝐀𝐀|𝐛𝐛: 

𝐀𝐀|𝐛𝐛 = �

𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑁𝑁
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑁𝑁
⋮ ⋮ ⋱ ⋮

𝑎𝑎𝑀𝑀1 𝑎𝑎𝑀𝑀2 … 𝑎𝑎𝑀𝑀𝑁𝑁

  �  

𝑏𝑏1
𝑏𝑏2
⋮
𝑏𝑏𝑀𝑀

� 

Gaussian elimination performs operations called “gaussian steps” on this augmented matrix until it 
reaches row echelon form. A matrix is in row echelon form if: 

• All zero rows are at the bottom of the matrix 
• The first nonzero number of each row (called the pivot) is always to the right of the pivot of 

the row above. Therefore, every pivot has all zeroes below and to the left of it. 

Example of a matrix in row echelon form:  

⎝

⎜⎜
⎛

  

𝑎𝑎 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 0 𝑏𝑏 ∗ ∗ ∗ ∗ ∗
0 0 0 𝑐𝑐 ∗ ∗ ∗ ∗
0 0 0 0 0 𝑑𝑑 ∗ ∗
0 0 0 0 0 0 𝑒𝑒 ∗
0 0 0 0 0 0 0 0

�
�

∗
∗
∗
∗
∗
∗⎠

⎟⎟
⎞

 

 Columns            with                     no pivots 

• 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒 are the pivots  (leftmost non-zero numbers in each row) 
• asterisks ∗ are any number (non-zero or zero) 

A matrix that has been reduced to this form tells you all its secrets if you know how to read them: 

• Row echelon form is triangular, so its determinant is the product of the diagonal elements. 
• Columns with pivot correspond to linearly independent vectors, while columns with no 

pivot are linearly dependent on those with pivot. 
o The range of the original matrix (before gaussian elimination) can be obtained as the 

span of the columns in the original matrix which have pivot in the row echelon form. 
o The number of columns with pivot is therefore equal to rank(𝐀𝐀). 
o If all columns have a pivot, all columns are linearly independent and the original 

matrix has full rank and is non-singular. 

• Columns without pivot correspond to linearly dependent vectors, linear combination of 
those with pivot 

o the unknown variable corresponding to columns with no pivot will be free variables 
(degree of freedom of the solution) 
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SOLVING THE SYSTEM AFTER GAUSSIAN ELIMINATION: 

After Gaussian elimination, the resulting system of equations is equivalent: 

(𝐀𝐀|𝐛𝐛)
Gaussian elimination
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� (𝐔𝐔|𝐜𝐜) 

This means that the system 𝐔𝐔𝐱𝐱 = 𝐜𝐜 has the same solutions as the original system 𝐀𝐀𝐱𝐱 = 𝐛𝐛. 

Different cases arise depending on the form of the row echelon form system (𝐔𝐔|𝐜𝐜): 

 

Case 1: Unique solution exists. 𝐔𝐔 is an upper triangular matrix (all columns have pivot).  

�

≠ 0 ∗ ∗ ∗
0 ≠ 0 ∗ ∗
0 0 ≠ 0 ∗
0 0 0 ≠ 0

�

∗
∗
∗
∗

� 

Solve the system by inverse substitution: solve the last variable starting from the bottom 
row, which involves only one variable. Substitute the solution in the previous row, and so on. 

Remember that the first column corresponds to the first variable 𝑥𝑥1, second column to 𝑥𝑥2, 
etc. 

 

Case 2: No solutions. Some rows of 𝐔𝐔 are all zero, but column 𝐜𝐜 is not zero in at least one of them.  

This means that 𝐜𝐜 is outside the range of 𝐔𝐔, and therefore 𝐱𝐱 is outside the range of 𝐀𝐀, so the system 
has no solution. Note this case never happens when solving the homogeneous system 𝐀𝐀𝐱𝐱 = 𝟎𝟎, 
because 𝟎𝟎 is always inside the range of every matrix. 

�

≠ 0 ∗ ∗ ∗
0 ≠ 0 ∗ ∗
0 0 0 0
0 0 0 0

�

∗
∗
≠ 0
∗

� 

 

Case 3: Infinite solutions. Rest of cases. 

i.e. all the zero rows of 𝐔𝐔 are also zero for 𝐜𝐜, and 𝐔𝐔 has columns with no pivot (in other words, after 
removing all zero rows, 𝐔𝐔 has more columns than rows): the system then has infinite solutions.  

�

≠ 0 ∗ ∗ ∗ ∗ ∗
0 ≠ 0 ∗ ∗ ∗ ∗
0 0 0 ≠ 0 ∗ ∗
0 0 0 0 0 ≠ 0

�

∗
∗
∗
∗

� 

  No pivot          No pivot (free variables) 

Solve the system by assigning free parameters 𝝀𝝀,𝝁𝝁,⋯ to the variables corresponding to 
the columns with no pivot. Solve the other variables by inverse substitution. 
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THE GAUSSIAN STEP: 

How do you get the augmented matrix into row echelon form? 

Remember when we solved a system of equations � 𝑥𝑥 + 𝑦𝑦 = 2
−𝑥𝑥 + 𝑦𝑦 = 3 we could do linear combinations of 

the equations in order to isolate the variables. Now we will do similar things: 

There are three types of gaussian steps: 

• 𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑅𝑅𝑖𝑖  →  𝑅𝑅𝑖𝑖:  Get any row and add to it a scaled version of another row  
(scalars 𝜆𝜆 can be negative, i.e. subtraction of rows). 

• 𝜆𝜆𝑅𝑅𝑖𝑖  →  𝑅𝑅𝑖𝑖  :   Multiply a row by a non-zero scalar. 
• 𝑅𝑅3 ↔ 𝑅𝑅2 :   Swap any two rows. 

 
Example:  
 

�
1 1 2
−2 −2 −3
4 6 8

�
𝑅𝑅2+ 2𝑅𝑅1 → 𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯⎯� �

1 1 2
0 0 1
4 6 8

�
𝑅𝑅3 − 4𝑅𝑅1 → 𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯⎯⎯� �

1 1 2
0 0 1
0 2 0

�
𝑅𝑅3↔𝑅𝑅2�⎯⎯⎯� �

1 1 2
0 2 0
0 0 1

� 

 
• 𝑅𝑅2 +  2𝑅𝑅1  →  𝑅𝑅2: second row plus two times the first row, placed in second row. 
• 𝑅𝑅3  −  4𝑅𝑅1  →  𝑅𝑅3 : third row minus four times first row, placed in third row. 
• 𝑅𝑅3 ↔ 𝑅𝑅2 : swap row 3 with row 2. 
 
Gaussian steps ensure that the augmented matrix in every step corresponds to an equivalent system 
of equations, that is, the solutions are the same. The gaussian step also preserves the linear 
dependence or independence of each individual column. 

  
Gaussian steps allow turning any matrix into row echelon form: 

• Use the pivot of the first row to turn every non-zero coefficient below it to zero 
• Move onto the next row. If any row below it has a pivot to the left of the current row’s pivot, 

swap the rows (the aim is that no row has any pivot to the left of the previous rows). Use 
this new pivot to turn every non-zero coefficient below it to zero. 
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1) Example: Solve the following system of equations: 

�

𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 − 4 = 0
2𝑥𝑥1 + 𝑥𝑥3 + 𝑥𝑥4 = 6 − 2𝑥𝑥2
3𝑥𝑥1 + 𝑥𝑥2 = 7 − 2𝑥𝑥3 − 𝑥𝑥4

𝑥𝑥1 + 𝑥𝑥2 + 2(2𝑥𝑥3 + 𝑥𝑥4 − 4) = 0

 

First write the system putting all variables on the left, and all independent terms on the right: 

�

1𝑥𝑥1 + 1𝑥𝑥2 + 1𝑥𝑥3 + 1𝑥𝑥4 = 4
2𝑥𝑥1 + 2𝑥𝑥2 + 1𝑥𝑥3 + 1𝑥𝑥4 = 6
3𝑥𝑥1 + 1𝑥𝑥2 + 2𝑥𝑥3 + 1𝑥𝑥4 = 7
1𝑥𝑥1 + 1𝑥𝑥2 + 4𝑥𝑥3 + 2𝑥𝑥4 = 8

 

 
Write the system in matrix form: 

�

1 1 1 1
2 2 1 1
3 1 2 1
1 1 4 2

��

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4

� = �

 4
 6
 7
 8

� 

 
Write 𝐀𝐀𝐱𝐱 = 𝐛𝐛 as an augmented matrix (𝐀𝐀|𝐛𝐛), and start performing Gaussian steps to bring the 
matrix into row echelon form.  

1. Use the pivot to introduce zeroes below it by adding multiples of the first row to the others 
2. Swap rows if necessary, to make sure that top rows have the leftmost pivots 

 

�

1 1 1 1
2 2 1 1
3 1 2 1
1 1 4 2

�

 4
 6
 7
 8

�

𝑅𝑅2−2𝑅𝑅1→𝑅𝑅2
𝑅𝑅3−3𝑅𝑅1→𝑅𝑅3
𝑅𝑅4−𝑅𝑅1→𝑅𝑅4�⎯⎯⎯⎯⎯⎯⎯� �

1 1 1 1
0 0 −1 −1
0 −2 −1 −2
0 0 3 1

�

 4
−2
−5
 4

�
𝑅𝑅2↔𝑅𝑅3�⎯⎯⎯� �

1 1 1 1
0 −2 −1 −2
0 0 −1 −1
0 0 3 1

�

 4
−5
−2
 4

� 

𝑅𝑅4+3𝑅𝑅3→𝑅𝑅4�⎯⎯⎯⎯⎯⎯⎯� �

1 1 1 1
0 −2 −1 −2
0 0 −1 −1
0 0 0 −2

�

 4
−5
−2
−2

� in the form (𝐔𝐔|𝐜𝐜):  Unique solution 

Solve the unique solution by inverse substitution: 

4th row: −2𝑥𝑥4 = −2   →    𝑥𝑥4 = 1 
3rd row: −𝑥𝑥3 − 𝑥𝑥4 = −2   →    𝑥𝑥3 = 2 − 𝑥𝑥4 = 1 
2nd row: −2𝑥𝑥2 − 𝑥𝑥3 − 2𝑥𝑥4 = −5   →     𝑥𝑥2 = (1/2)(5 − 𝑥𝑥3 − 2𝑥𝑥4) = 1 
1st row: 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 = 4 → 𝑥𝑥1 = 4 − 𝑥𝑥2 − 𝑥𝑥3 − 𝑥𝑥4 = 1 

We can write the solution in compact vector form: 

𝐱𝐱 = �

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4

� = �

 1
 1
 1
 1

� 

Also det𝐀𝐀 = (−1) det𝐔𝐔 (due to the swap) = (−1)(1)(−2)(−1)(−2) = 4 
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2) Example: Solve the following system of equations: 

�
𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 = 7
𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥4 = 5

2𝑥𝑥1 + 2𝑥𝑥2 + 3𝑥𝑥3 + 𝑥𝑥4 = 10
 

 
Write the system in matrix form (notice it is not a square matrix): 

�
1 1 1 1
1 1 0 2
2 2 3 1

��

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4

� = �
 7
 5

 10
� 

 
Write 𝐀𝐀𝐱𝐱 = 𝐛𝐛 as an augmented matrix (𝐀𝐀|𝐛𝐛), and start performing Gaussian steps to bring the 
matrix into row echelon form.  
 

�
1 1 1 1
1 1 0 2
2 2 3 1

 � 
7
5

10
�

𝑅𝑅2−𝑅𝑅1→𝑅𝑅2
𝑅𝑅3−2𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

1 1 1 1
0 0 −1 1
0 0 1 −1

 � 
7
−2
−4

�
𝑅𝑅3+𝑅𝑅2→𝑅𝑅3�⎯⎯⎯⎯⎯⎯� �

1 1 1 1
0 0 −1 1
0 0 0 0

 � 
7
−2
−6

� 

 
in row echelon form (𝐔𝐔|𝐜𝐜). This system is incompatible, no solutions exist, because the all-zeros 
rows of 𝐔𝐔 are not zero in 𝐜𝐜 too. 
 

 

3) Example: Solve the following system of equations: 

�
𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 = 7
𝑥𝑥1 + 𝑥𝑥2 + 2𝑥𝑥4 = 5

2𝑥𝑥1 + 2𝑥𝑥2 + 3𝑥𝑥3 + 𝑥𝑥4 = 16
 

 
Write the system in matrix form (notice it is not a square matrix): 
 

�
1 1 1 1
1 1 0 2
2 2 3 1

��

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4

� = �
 7
 5
16
� 

 
Write 𝐀𝐀𝐱𝐱 = 𝐛𝐛 as an augmented matrix (𝐀𝐀|𝐛𝐛), and start performing Gaussian steps to bring the 
matrix into row echelon form.  
 

�
1 1 1 1
1 1 0 2
2 2 3 1

 � 
7
5

16
�

𝑅𝑅2−𝑅𝑅1→𝑅𝑅2
𝑅𝑅3−2𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

1 1 1 1
0 0 −1 1
0 0 1 −1

 � 
7
−2
2
�
𝑅𝑅3+𝑅𝑅2→𝑅𝑅3�⎯⎯⎯⎯⎯⎯� �

1 1 1 1
0 0 −1 1
0 0 0 0

 � 
7
−2
0
� 

 
in row echelon form (𝐔𝐔|𝐜𝐜). This system has infinite solutions because, removing all-zero rows, it has 
more columns than rows.  We solve it as follows: 
 
First: Variables associated with no-pivot columns are given independent free parameters: 
𝑥𝑥4 = 𝛼𝛼 and 𝑥𝑥2 = 𝛽𝛽. 
 
Then we solve the other variables by inverse substitution: 
2nd row: −𝑥𝑥3 + 𝑥𝑥4 = −2  →    𝑥𝑥3 = 2 + 𝑥𝑥4 = 2 + 𝛼𝛼 
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1st row: 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑥𝑥4 = 7  →   𝑥𝑥1 = 7 − 𝑥𝑥2 − 𝑥𝑥3 − 𝑥𝑥4 = 7 − 𝛽𝛽 − (2 + 𝛼𝛼) − 𝛼𝛼 = 5 − 2𝛼𝛼 − 𝛽𝛽 
 
We can write the general solution in compact vector form as: 
 

𝐱𝐱 = �

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4

� = �

 5
 0
 2
 0

� + 𝛼𝛼�

−2
 0
 1
 1

� + 𝛽𝛽�

−1
 1
 0
 0

� 

 
The general solution is a plane in four dimensions. 
 
Note: For this example I took the previous example which had no solutions and modified the 
independent coefficients only, to make sure that 𝐛𝐛 fell inside the column space of 𝐀𝐀 so that there 
were solutions this time. This means that the steps for Gaussian elimination where the same as in 
the previous exercise. This means that once we perform the Gaussian steps for any system 𝐀𝐀𝐱𝐱 = 𝐛𝐛𝟏𝟏, 
we can solve related systems 𝐀𝐀𝐱𝐱 = 𝐛𝐛𝟐𝟐,𝐛𝐛𝟑𝟑,⋯ by just remembering 𝐔𝐔 and performing the gaussian 
steps on the different 𝐛𝐛𝐢𝐢’s and doing inverse substitution. 
  

 

4) Consider the transformation 𝐀𝐀 = �
1 1 −1 2
2 −1 −1 1
0 3 −1 3

�. Find the range and the null space of this 

transformation. 

Solution: 
To obtain the range we need to check if the columns are linearly dependent or independent. It turns 
out we can do that by solving a system 𝐀𝐀𝐱𝐱 = 𝟎𝟎. 
 

 
 

Therefore, we can solve the system 𝐀𝐀𝐱𝐱 = 𝟎𝟎: 
 

�
1 1 −1 2
2 −1 −1 1
0 3 −1 3

��

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4

� = �
0
0
0
� 

Write down the augmented matrix and perform Gaussian steps:  

�
1 1 −1 2
2 −1 −1 1
0 3 −1 3

  �  
0
0
0
�
𝑅𝑅2−2𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯� �

1 1 −1 2
0 −3 1 −3
0 3 −1 3

  �  
0
0
0
�
𝑅𝑅3+𝑅𝑅2→𝑅𝑅3�⎯⎯⎯⎯⎯⎯� �

1 1 −1 2
0 −3 1 −3
0 0 0 0

  �  
0
0
0
� 

This tells us that the third and fourth columns (no pivots) of the original matrix where linearly 
dependent on the first and second column. The range is equal to the span of the columns in the 
original matrix, and we can discard the linearly dependent columns, which therefore leaves us with 
the span of the first and second columns (i.e. the span of the columns in 𝐀𝐀 that have pivot in 𝐔𝐔): 

Columns of  𝐀𝐀 
{𝐯𝐯1,𝐯𝐯2, … , 𝐯𝐯𝑁𝑁} are 

linearly independent 
⟺ ∑𝑥𝑥𝑖𝑖𝐯𝐯𝑖𝑖 = 0 

Only when all 𝑥𝑥𝑖𝑖 = 0 ⟺ 𝐀𝐀𝐱𝐱 = 𝟎𝟎 
has unique solution 𝐱𝐱 = 𝟎𝟎 
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Range(𝐀𝐀) = span ��
1
2
0
� ,�

1
−1
3
��  

The rank of the matrix is equal to two (number of dimensions of the range), which equals the 
number of columns with pivot. 

As you can see, Gaussian elimination is useful for finding if vectors are linearly independent, and not 
only that, but also for knowing WHICH vectors in the set can be kept and which ones discarded. 

The null space are the solutions of the same system 𝐀𝐀𝐱𝐱 = 𝟎𝟎. The columns without pivots (𝑥𝑥3 and 𝑥𝑥4) 
can be given free parameters. The other variables can be obtained by inverse substitution: 

𝑥𝑥4 = 𝛼𝛼 
𝑥𝑥3 = 𝛽𝛽 
2nd row: −3𝑥𝑥2 + 𝑥𝑥3 − 3𝑥𝑥4 = 0 → 𝑥𝑥2 = �1

3
� (𝑥𝑥3 − 3𝑥𝑥4) = −𝛼𝛼 + �1

3
�𝛽𝛽 

1st row: 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 + 2𝑥𝑥4 = 0 → 𝑥𝑥1 = −𝑥𝑥2 + 𝑥𝑥3 − 2𝑥𝑥4 = −𝛼𝛼 + �4
3
� 𝛽𝛽 

So the answer can be written in vector form: 

𝐱𝐱 = �

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4

� = 𝛼𝛼�

−1
−1
 0
 1

� + 𝛽𝛽�

2/3
1/3
 1
 0

� 

 
It is the equation of a plane in a 4-dimensional space. 
Indeed, the theorem of dimensions is fulfilled, as rank(𝐀𝐀) = 2 and nullity(𝐀𝐀) = 2. 
 

 

5) Example: Solve the following system of equations: 

�
1 2 −5 −1 2
0 1 −2 1 −4
2 −3 4 2 −1

�

⎝

⎜
⎛

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4
𝑥𝑥5⎠

⎟
⎞

= �
−3
1
9
� 

Write down the augmented matrix and perform Gaussian steps:  

�
1 2 −5 −1 2
0 1 −2 1 −4
2 −3 4 2 −1

  �  
−3
1
9
�
𝑅𝑅3−2𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

1 2 −5 −1 2
0 1 −2 1 −4
0 −7 14 4 −5

  �  
−3
1

15
�

𝑅𝑅3+7𝑅𝑅2→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �
1 2 −5 −1 2
0 1 −2 1 −4
0 0 0 11 −33

  �  
−3
1

22
�

�
1
11
�𝑅𝑅3→𝑅𝑅3

�⎯⎯⎯⎯⎯⎯⎯� �
1 2 −5 −1 2
0 1 −2 1 −4
0 0 0 1 −3

  �  
−3
1
2
� 

 

The columns without pivots (𝑥𝑥3 and 𝑥𝑥5) can be given free parameters. The other variables can be 
obtained by inverse substitution: 
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𝑥𝑥5 = 𝛼𝛼 
𝑥𝑥3 = 𝛽𝛽 
3rd row: 𝑥𝑥4 − 3𝑥𝑥5 = 2 →   𝑥𝑥4 = 2 + 3𝑥𝑥5 = 2 + 3𝛼𝛼 
2nd row: 𝑥𝑥2 − 2𝑥𝑥3 + 𝑥𝑥4 − 4𝑥𝑥5 = 1 →   𝑥𝑥2 = 2𝑥𝑥3 − 𝑥𝑥4 + 4𝑥𝑥5 + 1 = −1 + 2𝛽𝛽 + 𝛼𝛼 

1st row: 𝑥𝑥1 + 2𝑥𝑥2 − 5𝑥𝑥3 − 𝑥𝑥4 + 2𝑥𝑥5 = −3 → 𝑥𝑥1 = −3 − 2𝑥𝑥2 + 5𝑥𝑥3 + 𝑥𝑥4 + 2𝑥𝑥5 = 1 − 𝛼𝛼 + 𝛽𝛽 

So the answer can be written in vector form: 

𝐱𝐱 =

⎝

⎜
⎛

 𝑥𝑥1
 𝑥𝑥2
 𝑥𝑥3
 𝑥𝑥4
𝑥𝑥5⎠

⎟
⎞

=

⎝

⎜
⎛

 1
−1
 0
 2
0 ⎠

⎟
⎞

+ 𝛼𝛼

⎝

⎜
⎛
−1
 1
 0
 3
1 ⎠

⎟
⎞

+ 𝛽𝛽

⎝

⎜
⎛

 1
 2
 1
 0
0⎠

⎟
⎞

 

 
It is the equation of a plane in a 5-dimensional space. 
Note that the subspace spanned by the vectors multiplying 𝛼𝛼 and 𝛽𝛽 correspond to the null space of 
the transformation: as we know any solution can be added any multiple of a combination of those 
vectors.  

 

Gaussian elimination can also be done with complex matrices. 

6) Problem: Solve ��
𝑖𝑖 −𝑖𝑖 1
1 −2 2
1 1 2

�𝐱𝐱 = �
𝑖𝑖

3𝑖𝑖
0
�  

Solution:  

We can write down the augmented matrix and perform Gaussian steps:  

�
𝑖𝑖 −𝑖𝑖 1
1 −2 2
1 1 2

  �  
𝑖𝑖

3𝑖𝑖
0
�
𝑅𝑅2+𝑖𝑖𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯� �

𝑖𝑖 −𝑖𝑖 1
0 −1 2 + 𝑖𝑖
1 1 2

  �  
𝑖𝑖

−1 + 3𝑖𝑖
0

�
𝑅𝑅3+𝑖𝑖𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

𝑖𝑖 −𝑖𝑖 1
0 −1 2 + 𝑖𝑖
0 2 2 + 𝑖𝑖

  �  
𝑖𝑖

−1 + 3𝑖𝑖
−1

� 

            
𝑅𝑅3+2𝑅𝑅2→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

𝑖𝑖 −𝑖𝑖 1
0 −1 2 + 𝑖𝑖
0 0 6 + 3𝑖𝑖

  �  
𝑖𝑖

−1 + 3𝑖𝑖
−3 + 6𝑖𝑖

�
𝑅𝑅3/3→𝑅𝑅3�⎯⎯⎯⎯⎯� �

𝑖𝑖 −𝑖𝑖 1
0 −1 2 + 𝑖𝑖
0 0 2 + 𝑖𝑖

  �  
𝑖𝑖

−1 + 3𝑖𝑖
−1 + 2𝑖𝑖

� 

Which we can solve by inverse substitution: 

Third row: 𝑥𝑥3 = −1+2𝑖𝑖
2+𝑖𝑖

= (−1+2𝑖𝑖)(2−𝑖𝑖)
(2+𝑖𝑖)(2−𝑖𝑖)

= −2+𝑖𝑖+4𝑖𝑖+2
4+1

= 5𝑖𝑖
5

= 𝑖𝑖 

Second row: −𝑥𝑥2 + (2 + 𝑖𝑖)𝑥𝑥3 = (−1 + 3𝑖𝑖) → 𝑥𝑥2 = (2 + 𝑖𝑖)𝑖𝑖 − (−1 + 3𝑖𝑖) = −1 + 2𝑖𝑖 + 1 − 3𝑖𝑖 = −𝑖𝑖 

Third row: 𝑖𝑖𝑥𝑥1 − 𝑖𝑖𝑥𝑥2 + 𝑥𝑥3 = 𝑖𝑖 → 𝑖𝑖𝑥𝑥1 − 1 + 𝑖𝑖 = 𝑖𝑖 → 𝑖𝑖𝑥𝑥1 = 1 → 𝑥𝑥1 = 1
𝑖𝑖

= −𝑖𝑖 

So, the solution is unique: 

𝐱𝐱 = �
−𝑖𝑖
−𝑖𝑖
𝑖𝑖
� 

 

 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.4 (10) 

Gaussian elimination can be used to convert equations of lines/planes/etc. into parametric form: 

7) Find the parametric equation of the following geometrical entity: 

𝑥𝑥 − 4 = 𝑦𝑦 = 𝑧𝑧 + 1 
 

From previous lectures we know that this is the equation of a line. However, we can apply the 
methods of this lecture to obtain that answer through another method: 
 

The equation is in reality two different equations: �
𝑥𝑥 − 4 = 𝑦𝑦
𝑦𝑦 = 𝑧𝑧 + 1 

which can be written as: �1𝑥𝑥 − 1𝑦𝑦 + 0𝑧𝑧 = 4
0𝑥𝑥 + 1𝑦𝑦 − 1𝑧𝑧 = 1 

Written as an augmented matrix:  

�1 −1 0
0 1 −1�

  4
  1� 

It is already in row echelon form. We have a free parameter (the third column, with no pivot). 

𝑧𝑧 = 𝛼𝛼 
2nd row: 𝑦𝑦 − 𝑧𝑧 = 1 →   𝑦𝑦 = 1 + 𝑧𝑧 = 1 + 𝛼𝛼 
3rd row: 𝑥𝑥 − 𝑦𝑦 = 4 →   𝑥𝑥 = 4 + 𝑦𝑦 = 5 + 𝛼𝛼 

So, the solution in vector form is, indeed as expected, the parametric equation of the line: 

𝐫𝐫 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

5
1
0
� + 𝛼𝛼 �

1
1
1
� 

Interestingly, comparing the equation of the line 𝑥𝑥 − 4 = 𝑦𝑦 = 𝑧𝑧 + 1 with the usual form 
 𝑥𝑥−𝑥𝑥0
𝑣𝑣𝑥𝑥

= 𝑦𝑦−𝑦𝑦0
𝑣𝑣𝑦𝑦

= 𝑧𝑧−𝑧𝑧0
𝑣𝑣𝑧𝑧

, we would have written the equation of the line as:  

𝐫𝐫 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

4
0
−1

�+ 𝛼𝛼 �
1
1
1
� 

Both are, of course, the same line! Even though the specific equation looks different. 
 
Remember that the specific choice of points 𝐫𝐫0 and the specific choice of vectors multiplying the free 
parameters, in this case 𝐯𝐯, is not unique, because any point in the line is good for 𝐫𝐫0 and any vector 
in the line is good for 𝐯𝐯.  
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8) A plane in 3D is given by the equation 𝑧𝑧 = 1 − 𝑦𝑦. Find the parametric equation of this plane. 

This is a very interesting question because it is unconventional. It is not written as a system of 
equations, however, the same algorithms we use to find the solutions can be applied to the case of 
matrices with one row! 

The equation, written explicitly in terms of the 𝑥𝑥,𝑦𝑦, 𝑧𝑧 unknowns, is: 

0𝑥𝑥 + 1𝑦𝑦 + 1𝑧𝑧 = 1 

Written as an augmented matrix: 

(0 1 1 |  1) 

The second column has the pivot (the first non-zero number in the row, by definition). There are no 
more pivots because there are no more rows, so the other two columns correspond to free 
variables. So: 

𝑥𝑥 = 𝛼𝛼 
𝑧𝑧 = 𝛽𝛽 
1st row: 𝑦𝑦 + 𝑧𝑧 = 1 → 𝑦𝑦 = 1 − 𝑧𝑧 = 1 − 𝛽𝛽 

Therefore, written in vector form: 

𝐫𝐫 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

0
1
0
� + 𝛼𝛼 �

1
0
0
� + 𝛽𝛽 �

0
−1
1
� 

Which gives us two vectors that span the plane, and a point in the plane. Easy! 

 

9) A plane in 3D is given by the equation 𝐫𝐫 ⋅ �
2
1
1
� = 0. Find the parametric equation of this plane. 

Again another unconventional question. But notice that this dot product is a linear equation: 

2𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 0 

Written as an augmented matrix: 

(2 1 1  |  0) 

The first column has a pivot, the other two columns correspond to free variables. So: 

𝑧𝑧 = 𝛼𝛼 
𝑦𝑦 = 𝛽𝛽 
1st row: 2𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 = 0 →  𝑥𝑥 = −1

2
𝑦𝑦 − 1

2
𝑧𝑧 = −1

2
𝛼𝛼 − 1

2
𝛽𝛽 

Therefore, written in vector form: 

𝐫𝐫 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

0
0
0
� + 𝛼𝛼 �

−1/2
0
1

�+ 𝛽𝛽 �
−1/2

1
0

� 

Which gives us two vectors that span the plane. 
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CALCULATION OF DETERMINANTS USING GAUSSIAN ELIMINATION 
 
Gaussian elimination can be used for finding the determinant if we keep track of how each gaussian 
step affects the determinant of the resulting matrix: 
 

• 𝑅𝑅𝑖𝑖 + 𝜆𝜆𝑅𝑅𝑖𝑖  →  𝑅𝑅𝑖𝑖:  The most common gaussian step does not change the determinant. 
• 𝜆𝜆𝑅𝑅𝑖𝑖  →  𝑅𝑅𝑖𝑖:   Scaling a row multiplies the determinant by the same scalar 𝜆𝜆. 
• 𝑅𝑅3 ↔ 𝑅𝑅2 :   Swapping two rows (or columns) multiplies the determinant by −1. 
• Once the matrix is triangular, the determinant is the product of the diagonal. 

 

10) Example: Calculate the determinant of 𝐀𝐀 = �
1 1 2

−100 −100 −150
4 6 8

� using Gaussian 

elimination. 

�
1 1 2

−100 −100 −150
4 6 8

�
�
1
50
�𝑅𝑅2 → 𝑅𝑅2

�⎯⎯⎯⎯⎯⎯⎯� (50) �
1 1 2
−2 −2 −3
4 6 8

� 

 
This gaussian step multiplied the determinant of the resulting matrix by � 1

50
�, so we multiply the 

determinant by 50 to keep it equal to the original determinant. 
 

𝑅𝑅2+ 2𝑅𝑅1 → 𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯⎯� (50) �
1 1 2
0 0 1
4 6 8

�
𝑅𝑅3 − 4𝑅𝑅1 → 𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯⎯⎯� (50) �

1 1 2
0 0 1
0 2 0

� 

 
These gaussian steps do not modify the determinant, so the determinants are equal. Finally we swap 
two rows, to make the matrix triangular, which changes the sign of the determinant. We multiply by 
(−1) to keep it equal. 
 

𝑅𝑅3↔𝑅𝑅2�⎯⎯⎯� (−1)(50) �
1 1 2
0 2 0
0 0 1

� = (−1) × 50 × 2 = −100 

 
Since the matrix is now triangular, the determinant is equal to the product of the diagonal elements. 
 
For 3 × 3 matrices, this procedure seems more cumbersome than the usual cofactors method. 
However, for 4 × 4 and 5 × 5 this procedure is much easier. By the time you reach 20 × 20 this 
would be the only possible way of realistically calculating the determinant. 
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C. COMPUTATIONAL SOLVING OF SYSTEMS 

 
Solving systems of equation by calculating the inverse (bruto force way using matrix of cofactors) 
involves calculating determinants, which are very expensive to compute.  
 
If you estimate the number of operations required to solve a system of equations via a brute force 
calculation of the inverse, the answer is ≈ (𝑛𝑛 + 1)! Where 𝑛𝑛! = 𝑛𝑛(𝑛𝑛 − 1)(𝑛𝑛 − 2)⋯ (2)(1) stands 
for factorial. 
 
On the other hand, solving a system by Gaussian elimination requires a number of operations ≈
𝑛𝑛3/3. 
 
Imagine having to solve system of equations with hundreds or thousands of variables, as often 
happens in a technical career: 
 

Number of variables 𝑛𝑛 Gaussian elimination 
operations: 𝑛𝑛3/3 

Calculation of inverse using 
minors/cofactors : (𝑛𝑛 + 1)! 

10 333 39 916 800 
100 333 333 9.4 × 10159 

1000 333 333 333 4.0 × 102570 
 
Even with powerful computers, we MUST use Gaussian elimination. 
 
SOLVING LINEAR SYSTEM OF EQUATIONS IN PYTHON (GAUSSIAN ELIMINATION): 

import numpy 
A = np.array([[3,1], [1,2]]) 
b = np.array([9,8]) 
x = np.linalg.solve(A, b) 

 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.4 (14) 

D. GAUSS-JORDAN ELIMINATION AND MATRIX INVERSE 

Optional read: will not be in exam but can be very useful as a reference in 
your technical/scientific career. 

Gaussian elimination can be further continued to turn a matrix in row echelon form into reduced 
row echelon form, in which all pivots are always equal to 1 and have zeroes both below and above. 

⎝

⎜⎜
⎛

1 ∗ 0 0 ∗ 0 0 ∗
0 0 1 0 ∗ 0 0 ∗
0 0 0 1 ∗ 0 0 ∗
0 0 0 0 0 1 0 ∗
0 0 0 0 0 0 1 ∗
0 0 0 0 0 0 0 0

�

�

∗
∗
∗
∗
∗
∗⎠

⎟⎟
⎞

 

This is called Gauss-Jordan elimination. The solution to the system can then be read directly using 
each row to solve each variable (together with any free dependent variable). 

If all columns have pivots (non-singular matrix), Gauss-Jordan elimination results in the identity 
matrix. The solution can then just be read from the right column of the independent coefficients: 

(𝐀𝐀|𝐛𝐛)
Gauss−Jordan
�⎯⎯⎯⎯⎯⎯⎯⎯⎯� (𝐈𝐈|𝐱𝐱) 

In fact, if we start with an augmented matrix which uses the original matrix 𝐀𝐀 placed next to the 
identity matrix 𝐈𝐈, and then apply Gauss-Jordan elimination, we transform 𝐀𝐀 into 𝐈𝐈 and 𝐈𝐈 into 𝐀𝐀−𝟏𝟏. 

(𝐀𝐀|𝐈𝐈)
Gauss−Jordan
�⎯⎯⎯⎯⎯⎯⎯⎯⎯� �𝐈𝐈�𝐀𝐀−𝟏𝟏� 

This is how computers compute the inverse of a matrix. Much faster than the usual recipe. 

 

E. LU FACTORIZATION: 

Optional read: will not be in exam but can be very useful as a reference in 
your technical/scientific career. 

 
Each gaussian step of the form 𝑅𝑅𝑎𝑎 + 𝛼𝛼𝑅𝑅𝑏𝑏 → 𝑅𝑅𝑎𝑎 can be codified into a matrix: 
 

e.g. 𝑅𝑅2 + 𝛼𝛼𝑅𝑅1 → 𝑅𝑅2  can be written as: 𝐄𝐄1 = �
1 0 0
𝛼𝛼 1 0
0 0 1

� 

 
Therefore, the process of Gaussian elimination is the successive application of those steps, which 
can be seen as matrix multiplication of the different steps: 
 

�
𝑅𝑅2 + 𝛼𝛼𝑅𝑅1 → 𝑅𝑅2
𝑅𝑅3 + 𝛽𝛽𝑅𝑅1 → 𝑅𝑅3
𝑅𝑅3 + 𝛾𝛾𝑅𝑅2 → 𝑅𝑅3

    can be written as:   𝐄𝐄 = 𝐄𝐄3𝐄𝐄2𝐄𝐄1 = �
1 0 0
0 1 0
0 𝛾𝛾 1

��
1 0 0
0 1 0
𝛽𝛽 0 1

��
1 0 0
𝛼𝛼 1 0
0 0 1

� 

 

Therefore, the Gaussian elimination  
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(𝐀𝐀|𝐛𝐛)
Gaussian elimination
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� (𝐔𝐔|𝐜𝐜) 

Can be represented as a matrix multiplication: 

(𝐀𝐀|𝐛𝐛)
Gaussian elimination
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝐄𝐄(𝐀𝐀|𝐛𝐛) = (𝐄𝐄𝐀𝐀 | 𝐄𝐄𝐛𝐛) = (𝐔𝐔|𝐜𝐜) 

 
We have arrived at 𝐄𝐄𝐀𝐀 = 𝐔𝐔 so we can write 𝐀𝐀 = 𝐄𝐄−𝟏𝟏𝐔𝐔. It turns out that the matrix 𝐄𝐄 has an inverse 
which is very easy to generate if we know the scaling factors of the Gaussian steps: 
 

�
𝑅𝑅2 + 𝛼𝛼𝑅𝑅1 → 𝑅𝑅2
𝑅𝑅3 + 𝛽𝛽𝑅𝑅1 → 𝑅𝑅3
𝑅𝑅3 + 𝛾𝛾𝑅𝑅2 → 𝑅𝑅3

   → 𝐄𝐄 = 𝐄𝐄3𝐄𝐄2𝐄𝐄1 →  𝐄𝐄−1 = (𝐄𝐄3𝐄𝐄2𝐄𝐄1)−1 = 𝐄𝐄𝟏𝟏−1𝐄𝐄𝟐𝟐−1𝐄𝐄𝟑𝟑−1 = �
1 0 0
−𝛼𝛼 1 0
−𝛽𝛽 −𝛾𝛾 1

� 

 
With no need for actual calculation of inverses. 
 
This is a lower triangular matrix which we call 𝐋𝐋 = 𝐄𝐄−𝟏𝟏: 
 

�
𝑅𝑅2 + 𝛼𝛼𝑅𝑅1 → 𝑅𝑅2
𝑅𝑅3 + 𝛽𝛽𝑅𝑅1 → 𝑅𝑅3
𝑅𝑅3 + 𝛾𝛾𝑅𝑅2 → 𝑅𝑅3

   → 𝐋𝐋 = �
1 0 0
−𝛼𝛼 1 0
−𝛽𝛽 −𝛾𝛾 1

� 

 
Such that Gaussian elimination 𝐄𝐄𝐀𝐀 = 𝐔𝐔 can be rewritten using 𝐋𝐋 = 𝐄𝐄−𝟏𝟏 as: 

 
𝐀𝐀 = 𝐋𝐋𝐔𝐔 

 
Note that 𝐋𝐋 is a lower triangular matrix that can be constructed by the process of gaussian elimination 
(computationally efficient). The row echelon form 𝐔𝐔 is an upper triangular matrix when the system 
has a unique solution (and thus all columns have pivots). The names of the matrices LU stand for 
“lower” and “upper” triangular. 
 
Therefore, by doing Gaussian elimination, we can (with no need for extra operations) decompose the 
non-singular matrix 𝐀𝐀 as a product of a lower triangular 𝐋𝐋 and an upper triangular 𝐔𝐔 matrix. This is 
called LU factorization. The advantage of calculating this factorization is that now we can use it to 
solve the system: 
 

𝐀𝐀𝐱𝐱 = 𝐛𝐛 
𝐋𝐋𝐔𝐔𝐱𝐱�

𝐲𝐲
= 𝐛𝐛 

Which can be solved in two easy steps: 
 
First solve 𝐋𝐋𝐲𝐲 = 𝐛𝐛 to find 𝐲𝐲. This is easy because 𝐋𝐋 is triangular, so we can use inverse substitution. 
Then solve 𝐔𝐔𝐱𝐱 = 𝐲𝐲 to find 𝐱𝐱. This is also easy because 𝐔𝐔 is triangular, so we use inverse substitution. 
 
This is very useful when you are going to solve the same system 𝐀𝐀𝐱𝐱 = 𝐛𝐛 many times, perhaps millions 
of times, changing only the values of 𝐛𝐛. The computation of 𝐋𝐋𝐔𝐔 is done together with gaussian 
elimination when solving the system for the first time and needs to be done only once. The subsequent 
solving of the system for any vector 𝐛𝐛 requires only computationally fast inverse substitutions. 
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SWAPPING ROWS: 
 
In the above steps we assumed that Gaussian elimination only involved steps of the type 𝑅𝑅𝑎𝑎 + 𝛼𝛼𝑅𝑅𝑏𝑏 →
𝑅𝑅𝑎𝑎 with no substitution of rows. In practice we sometimes need to swap rows.  
 
Fortunately, the Gaussian step of swapping rows also corresponds to a matrix: 
 

e.g. 𝑅𝑅2 ↔ 𝑅𝑅3  can be written as: 𝐏𝐏1 = �
1 0 0
0 0 1
0 1 0

� 

 
And all necessary row permutations can be done at the beginning of the whole process via a simple 
permutation matrix 𝐏𝐏, so that 𝐏𝐏𝐀𝐀 is ready for gaussian elimination with no further row permutations. 
 

(𝐀𝐀|𝐛𝐛)
Permutations 𝐏𝐏
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝐏𝐏(𝐀𝐀|𝐛𝐛)

Gaussian elimination 𝐄𝐄
�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� 𝐄𝐄𝐏𝐏(𝐀𝐀|𝐛𝐛) = (𝐄𝐄𝐏𝐏𝐀𝐀 | 𝐄𝐄𝐏𝐏𝐛𝐛) = (𝐔𝐔|𝐜𝐜) 

 
So that 𝐄𝐄𝐏𝐏𝐀𝐀 = 𝐔𝐔. And remember that we called 𝐄𝐄−𝟏𝟏 = 𝐋𝐋 so that the factorization becomes: 
 

𝐏𝐏𝐀𝐀 = 𝐋𝐋𝐔𝐔 
 
With 𝐏𝐏 a permutation matrix, 𝐋𝐋 a lower triangular matrix and 𝐔𝐔 an upper triangular matrix. 
 
 
EXAMPLE: COMPUTING PA=LU FACTORIZATION IN PYTHON: 

import scipy 
import scipy.linalg   # SciPy Linear Algebra Library 
 
A = scipy.array([[7, 3, -1, 2],[3, 8, 1, -4],[-1, 1, 4, -1],[2, -4, -1, 6]]) 
 
P, L, U = scipy.linalg.lu(A) # returns matrices P, L and U 
 
 
Now you are ready to solve the system 𝐀𝐀𝐱𝐱 = 𝐛𝐛 as many times as you wish, requiring only inverse 
substitution. 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.5 (1) 

2.5 EIGENVECTORS AND DIAGONALIZATION 

 

A. CHANGE OF BASIS 

Beautiful explanation of change of basis in 3blue1brown YouTube channel:  
Change of basis | Essence of linear algebra, chapter 12 (13 min) 

CHANGE BASIS OF VECTOR USING MATRIX MULTIPLICATION 

A vector is an entity with magnitude and direction. Once we specify a basis, we can assign coordinates 
to the vector: 

𝐯𝐯 = (𝑣𝑣1,𝑣𝑣2)𝑇𝑇 in basis {𝐞𝐞1,𝐞𝐞2} represents the vector 𝐯𝐯 = 𝑣𝑣1𝐞𝐞1 + 𝑣𝑣2𝐞𝐞2. 

Our usual basis is {𝐞𝐞1,𝐞𝐞2} = {𝐱𝐱�,𝐲𝐲�}. 

But we can write the SAME vector, in ANOTHER basis {𝐛𝐛1,𝐛𝐛2}, giving two new coordinates 𝐯𝐯′ =
(𝑣𝑣1′ ,𝑣𝑣2′ ).  

𝐯𝐯′ = (𝑣𝑣1′ ,𝑣𝑣2′ )𝑇𝑇 in basis {𝐛𝐛1,𝐛𝐛2} represents the vector 𝐯𝐯 = 𝑣𝑣1′𝐛𝐛1 + 𝑣𝑣2′𝐛𝐛2. 

Even though they look different in terms of coordinates, 𝐯𝐯 and 𝐯𝐯′ are the SAME vector. This is like 
writing the same concept in a different language.  

How can we get the coordinates of the vector in the new language? 

In previous problems, we solved a linear system of equations 𝐯𝐯 = 𝑣𝑣1′𝐛𝐛1 + 𝑣𝑣2′𝐛𝐛2 to find 𝑣𝑣1′ , 𝑣𝑣2′ . 

But there is an alternative (easier) way of doing it, using matrices. To figure it out it’s best to start by 
thinking the other way around: How do you change a vector written in a different language (𝑣𝑣1′ ,𝑣𝑣2′ )𝑇𝑇 
in basis {𝐛𝐛1,𝐛𝐛2} into a vector written in our language {𝐞𝐞1,𝐞𝐞2}? We can multiply (𝑣𝑣1′ , 𝑣𝑣2′ )𝑇𝑇 by a change 
of basis matrix 𝐀𝐀, which is formed by placing the basis vectors we want to translate from as the 
columns of a matrix: 

 

This is intuitive to understand if we realise that we literally want to find the vector 𝐯𝐯 = 𝑣𝑣1′𝐛𝐛1 + 𝑣𝑣2′𝐛𝐛2, 
which is exactly what this matrix multiplication is doing.  

Then, to find the coordinates of a known vector in our language, translated to the new language, we 
just have to multiply by the inverse matrix!  

𝐯𝐯′ = 𝐀𝐀−𝟏𝟏𝐯𝐯 

�
𝑣𝑣1
𝑣𝑣2��

vector written in
our basis
𝑣𝑣1𝐞𝐞1+𝑣𝑣2𝐞𝐞2 

= �
| |
𝐛𝐛1 𝐛𝐛2
| |

�
�������

new basis vectors
𝐛𝐛1 and 𝐛𝐛2

written in our basis

⋅ �𝑣𝑣1
′

𝑣𝑣2′
�

�
vector written in

new basis
𝑣𝑣1′𝐛𝐛1+𝑣𝑣2′𝐛𝐛2 

 

𝐯𝐯 = 𝐀𝐀𝐯𝐯′ 

our basis ← new basis 

 

https://www.youtube.com/watch?v=P2LTAUO1TdA&list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&index=12
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1) Example: Expand the vector 𝐯𝐯 = (−1,1,1) in the basis {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑} with 𝐞𝐞𝟏𝟏 = (1,0,1), 𝐞𝐞𝟐𝟐 =
(0,1,1), and 𝐞𝐞𝟑𝟑 = (1,1,0). 

This is a problem we already did in the “N dimensional vectors” class, by solving a system of equations, 
solving for the linear coefficients 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3 such that: 

𝐯𝐯 = 𝑎𝑎1𝐞𝐞𝟏𝟏 + 𝑎𝑎2𝐞𝐞𝟐𝟐 + 𝑎𝑎3𝐞𝐞𝟑𝟑 

Now we are going to solve it using change of basis matrices. 

The change of basis matrix for {𝐞𝐞𝟏𝟏, 𝐞𝐞𝟐𝟐,𝐞𝐞𝟑𝟑} → {𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�} is given by placing {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑} as columns 
(written in terms of the {𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�} basis): 

 𝐀𝐀 = �
| | |
𝐞𝐞𝟏𝟏 𝐞𝐞𝟐𝟐 𝐞𝐞𝟑𝟑
| | |

� = �
1 0 1
0 1 1
1 1 0

�. 

The inverse of this matrix 𝐀𝐀−1 will convert {𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�} → {𝐞𝐞𝟏𝟏,𝐞𝐞𝟐𝟐, 𝐞𝐞𝟑𝟑} 

Let’s calculate the inverse. We start by computing the determinant using the first row: 

det𝐀𝐀 = 1 �1 1
1 0� − 0 �0 1

1 0� + 1 �0 1
1 1� = −2 

The minors are the determinants obtained when crossing out the corresponding row and column: 

�
𝑀𝑀11 𝑀𝑀12 𝑀𝑀13
𝑀𝑀21 𝑀𝑀22 𝑀𝑀23
𝑀𝑀31 𝑀𝑀32 𝑀𝑀33

� =

⎝

⎜⎜
⎛
�1 1
1 0� �0 1

1 0� �0 1
1 1�

�1 1
1 0� �1 1

1 0� �1 0
1 1�

�0 1
1 1� �1 1

0 1� �1 0
0 1�⎠

⎟⎟
⎞

= �
−1 −1 −1
−1 −1 1
−1 1 1

� 

The cofactors are the minors with alternating change of signs (−1)𝑖𝑖+𝑗𝑗: 

𝐂𝐂 = �
𝐶𝐶11 𝐶𝐶12 𝐶𝐶13
𝐶𝐶21 𝐶𝐶22 𝐶𝐶23
𝐶𝐶31 𝐶𝐶32 𝐶𝐶33

� = �
𝑀𝑀11 −𝑀𝑀12 𝑀𝑀13
−𝑀𝑀21 𝑀𝑀22 −𝑀𝑀23
𝑀𝑀31 −𝑀𝑀32 𝑀𝑀33

� = �
−1 1 −1
1 −1 −1
−1 −1 1

� 

The inverse is equal to the transpose of the cofactor matrix, divided by the determinant: 

𝐀𝐀−1 =
𝐂𝐂𝑇𝑇

det𝐀𝐀
=
�
−1 1 −1
1 −1 −1
−1 −1 1

�
𝑇𝑇

−2
=

1
2
�

1 −1 1
−1 1 1
1 1 −1

� 

Therefore, we can expand vector v into the new basis by applying the change 𝐀𝐀: 

𝐯𝐯′ = �
𝑎𝑎1
𝑎𝑎2
𝑎𝑎3
� = 𝐀𝐀−𝟏𝟏𝐯𝐯 =

1
2
�

1 −1 1
−1 1 1
1 1 −1

��
−1
1
1
� =

1
2
�
−1
3
−1

� 

The great thing about having the matrix 𝐀𝐀−𝟏𝟏 is that we can immediately translate any other vector 𝐯𝐯 
doing a simple matrix-vector multiplication. 

It is curious to note that this time, 𝐀𝐀 is representing a change of basis which leaves the actual vector 
entity unchanged, instead of representing a linear transformation of vectors. However, it can also be 
interpreted as a transformation. 
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CHANGING BASIS OF A MATRIX 

One same vector can be written in different languages/basis. Similarly, one same linear 
transformation can be written in different bases too, resulting in different matrix coefficients. 

In other words, a linear transformation can be written as a matrix ONLY AFTER we define a basis for 
the input and output spaces. The exact coefficients in this matrix will depend on the basis chosen for 
BOTH the input and the output vector spaces. 

 
 

Therefore, the coefficients of a given matrix represent a given linear transformation ONLY for a given 
input and output basis. The examples we have seen so far always assumed the usual {𝐱𝐱�,𝐲𝐲�, 𝐳𝐳�} basis for 
both input and output. 

In many cases, an appropriate choice of basis means that the matrix associated with a linear 
transformation can be written in a simpler way. 

Let’s focus on square matrices in which the input and output spaces are the same dimension and are 
represented using the same basis vectors: e.g. 2D to 2D transformations typically written in {𝐱𝐱, 𝐲𝐲} 
basis, both input and output. 

The question is: if we know 𝐌𝐌 in our basis, how can we translate it to the new language 𝐌𝐌′? 

Transformation 𝐰𝐰 = 𝐌𝐌𝐯𝐯 where vectors and matrices are written in “our” basis {𝐞𝐞1,𝐞𝐞2} 

Transformation 𝐰𝐰′ = 𝐌𝐌′𝐯𝐯′ where vectors and matrices are written in “new” basis {𝐛𝐛1,𝐛𝐛2} 
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We can figure it out by using the change of basis matrix 𝐀𝐀 (new language →  our language): 

 𝐰𝐰′ �

transformed vector
in new basis

= 𝐀𝐀−1 𝐌𝐌𝐀𝐀 𝐯𝐯′ �

original vector
in new basis

���������
original vector
in our basis�����������

transformed vector in
our basis���������������

transformed vector in
new basis

 

 

 

       

 

 

SIMILARITY TRANSFORMATIONS 

𝐌𝐌′ = 𝐀𝐀−1𝐌𝐌𝐀𝐀 

𝐌𝐌 = 𝐀𝐀𝐌𝐌′𝐀𝐀−1 

 

The matrices 𝐌𝐌 and 𝐌𝐌′ represent the SAME linear transformation, just in different basis!  

𝐌𝐌 and 𝐌𝐌′ are called SIMILAR MATRICES. 

Since they represent the same linear transformation, they share all properties of the transformation 
which are independent of the basis: 

Similar matrices always have the same… 

- Range and null-space (but written in their corresponding basis) 
- Rank and nullity 
- Determinant (the “amount of stretching/squashing” of the transformation) 
- Trace 
- Eigenvalues 
- Eigenvectors (but written in the corresponding basis) 
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ORTHOGONAL CHANGE-OF-BASIS MATRIX 

When the new basis {𝐛𝐛1,𝐛𝐛2,⋯ ,𝐛𝐛𝑁𝑁} is orthonormal, the change-of-basis matrix 

𝐀𝐀 = �
| |  |
𝐛𝐛1 𝐛𝐛2 … 𝐛𝐛𝑁𝑁
| |  |

� 

will have orthonormal vectors as its columns. Therefore, it is a unitary matrix, and as we know 𝐀𝐀−1 =
𝐀𝐀†, so the similarity transformation becomes 𝐌𝐌 = 𝐀𝐀𝐌𝐌′𝐀𝐀† and is even easier to calculate. 

Note: when considering real matrices, unitary matrices are called orthogonal matrix, and the property 
is 𝐀𝐀−1 = 𝐀𝐀𝑇𝑇. 

 

2) Example: Change the basis of the input and output space of matrix 𝐌𝐌 = �2 −1
1 1 � using a new 

basis {𝐛𝐛1 = (2,1),𝐛𝐛2 = (1,2)}. Check the determinant and trace stay the same. 

Let’s build the matrices which change the basis {𝐛𝐛1,𝐛𝐛2} ↔ {𝐱𝐱�, 𝐲𝐲�}. 

𝐀𝐀 = �
| |
𝐛𝐛1 𝐛𝐛2
| |

� = �2 1
1 2� translates basis {𝐛𝐛1,𝐛𝐛2} → {𝐱𝐱�, 𝐲𝐲�} 

𝐀𝐀−1 = 1
3
� 2 −1
−1 2 �, calculated by doing the inverse, translates basis {𝐱𝐱�,𝐲𝐲�} → {𝐛𝐛1,𝐛𝐛2} 

Now let’s convert our linear transformation 𝐌𝐌 into the language of basis {𝐛𝐛1,𝐛𝐛2} 

𝐌𝐌′ = 𝐀𝐀−1𝐌𝐌𝐀𝐀 =
1
3
� 2 −1
−1 2 � �2 −1

1 1 � �2 1
1 2� = �1 −1

1 2 � 

Indeed, det(𝐌𝐌) = det(𝐌𝐌′) = 3 and trace(𝐌𝐌) = trace(𝐌𝐌′) = 3. 

 

3) Orthonormal basis example: Change the basis of the input and output space of matrix 𝐌𝐌 =
�2 −1

1 1 � using a new basis �𝐛𝐛1 = 1
√2

(1,1),𝐛𝐛2 = 1
√2

(−1,1)�. Check the determinant and trace 

stay the same. 

Let’s build the matrices which change the basis {𝐛𝐛1,𝐛𝐛2} ↔ {𝐱𝐱�, 𝐲𝐲�}. 

𝐀𝐀 = �
| |
𝐛𝐛1 𝐛𝐛2
| |

� = 1
√2
�1 −1

1 1 � translates basis {𝐛𝐛1,𝐛𝐛2} → {𝐱𝐱�,𝐲𝐲�} 

Because {𝐛𝐛1,𝐛𝐛2} are orthonormal, the real matrix 𝐀𝐀 is orthogonal, and so: 

𝐀𝐀−1 = 𝐀𝐀T = 1
√2
� 1 1
−1 1� translates basis {𝐱𝐱�, 𝐲𝐲�} → {𝐛𝐛1,𝐛𝐛2} 

Now let’s convert our linear transformation 𝐌𝐌 into the language of basis {𝐛𝐛1,𝐛𝐛2} 

𝐌𝐌′ = 𝐀𝐀−1𝐌𝐌𝐀𝐀 =
1
√2

� 1 1
−1 1� �

2 −1
1 1 �

1
√2

�1 −1
1 1 � =

1
2
�3 −3

1 3 � 

Indeed, det(𝐌𝐌) = det(𝐌𝐌′) = 3 and trace(𝐌𝐌) = trace(𝐌𝐌′) = 3. 
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SIMILARITY TRANSFORMATIONS FOR RECTANGULAR MATRICES 

Let’s generalize this to rectangular matrices. Assume a general 𝑀𝑀 × 𝑁𝑁 matrix 𝐌𝐌 represents a linear 
transformation which acts on an N dimensional input space written using basis �𝐞𝐞𝑖𝑖in� and its output is 
in an M dimensional vector space written using basis �𝐞𝐞𝑖𝑖out�. In previous examples we used �𝐞𝐞𝑖𝑖in� =
�𝐞𝐞𝑖𝑖out�, but in general they could be different. Find out how to write the same linear transformation 
using a matrix working with an input space basis �𝐛𝐛𝑖𝑖in� and an output space basis �𝐛𝐛𝑖𝑖out�. 

First, we compute the translation matrix for the input and output space: 

𝐀𝐀𝑁𝑁×𝑁𝑁
in = �

|  |
𝐛𝐛1in … 𝐛𝐛𝑁𝑁in

|  |
�

�����������
new basis vectors 𝐛𝐛𝑖𝑖

in 
written in basis 𝐞𝐞𝑖𝑖

in

 : translates from new language �𝐛𝐛𝑖𝑖in� to our language �𝐞𝐞𝑖𝑖in�. 

𝐀𝐀𝑀𝑀×𝑀𝑀
out = �

|  |
𝐛𝐛1out … 𝐛𝐛𝑀𝑀out

|  |
�

�������������
new basis vectors 𝐛𝐛𝑖𝑖

in 
written in basis 𝐞𝐞𝑖𝑖

in

 : translates from new language �𝐛𝐛𝑖𝑖out� to our language �𝐞𝐞𝑖𝑖out�. 

If we want to translate in the other direction, we need to use the inverse matrices. 

Then, to find the transformation matrix in the new language, we can do a chain of operations: (i) 
translation in input space from the new language to our language, (ii) application of transformation in 
our language, and (iii) translation of the output back to new language. Each operation is added on the 
left as a pre-multiplication, so we get: 

𝐌𝐌′ = (𝐀𝐀out)−1𝐌𝐌𝐀𝐀in 

You can see that all the sizes in the multiplication are correct. 
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Example to deepen our understanding: Let’s mix things up! Find the matrix 𝐌𝐌′′ (representing the 
same linear transformation as 𝐌𝐌) which is defined using our language for the input space basis {𝐞𝐞𝑖𝑖in} 
but gives the result in the output space using the new language {𝐛𝐛𝑖𝑖out}. This new matrix combines the 
transformation with a change of basis. Write this new matrix in terms of 𝐌𝐌 and also in terms of 𝐌𝐌′. 
Once you find both expressions, check that they are equal using the relation between 𝐌𝐌 and 𝐌𝐌′. 

Things seem to be getting complicated. But everything becomes crystal clear if we do a diagram of the 
different vector spaces and their transformations, and find paths from desired input to desired output, 
where each additional step is a matrix multiplication on the left: 

 

We need to find an expression for the path 𝐌𝐌′′ which starts top left and ends in bottom right. 

To write 𝐌𝐌′′ in terms of 𝐌𝐌, we go right and then down: 

𝐌𝐌′′ = (𝐀𝐀out)−1𝐌𝐌 

To write 𝐌𝐌′′ in terms of 𝐌𝐌′, we go down and then right:  

𝐌𝐌′′ = 𝐌𝐌′�𝐀𝐀in�−1 

Check that both are equal via the relation 𝐌𝐌′ = (𝐀𝐀out)−1𝐌𝐌𝐀𝐀in: 

𝐌𝐌′′ = 𝐌𝐌′�𝐀𝐀in�−1 = (𝐀𝐀out)−1𝐌𝐌𝐀𝐀in�𝐀𝐀in�−1�������
𝐈𝐈

= (𝐀𝐀out)−1𝐌𝐌 
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B. EIGENVECTORS INTUITIVE UNDERSTANDING: 𝐀𝐀𝐯𝐯 = 𝝀𝝀𝐯𝐯 

In general, a linear transformation modifies an input vector such that both magnitude and direction 
are modified. But sometimes, a linear transformation 𝒜𝒜 has the property that, for some special 
vectors in the input space, it does not change their direction, only their magnitude. For these special 
vectors (called eigenvectors) the transformation 𝒜𝒜(𝐯𝐯) ≡ 𝐀𝐀𝐯𝐯 is equivalent to a simple scaling 𝜆𝜆𝐯𝐯, with 
a specific scaling coefficient 𝜆𝜆 (called eigenvalue). This is summarized as 𝐀𝐀𝐯𝐯 = 𝜆𝜆𝐯𝐯. 

Knowing what these vectors are can give us a lot of information about the transformation. 

 

4) Example: ISOTROPIC SCALING OF SPACE – determine eigenvectors and eigenvalues by 
intuition 

Consider a transformation which scales the whole space by a factor 𝐾𝐾.  

𝐀𝐀 = �𝐾𝐾 0
0 𝐾𝐾� 

Every vector in the input space undergoes a change in amplitude with no change in direction. 

Therefore, every vector in space fulfils: 

𝐀𝐀𝐯𝐯 = 𝐾𝐾𝐯𝐯. 

In this case, every vector in space 𝐯𝐯 ∈ span{𝐱𝐱�,𝐲𝐲�} is an eigenvector, with eigenvalue 𝐾𝐾. When 
specifying the eigenvectors, we simply list the vectors that span the subspace: 

 

 

5) Example: ROTATION IN 2D – determine eigenvectors and eigenvalues by intuition 

Consider the transformation which rotates the whole 2D space: 

𝐴𝐴 = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 �. 

This transformation modifies the direction of every possible input vector (except the trivial case 𝐯𝐯 =
𝟎𝟎) and therefore it has no eigenvectors (at least, no real ones… see later). 

 

6) Example: ROTATION IN 3D – determine eigenvectors and eigenvalues by intuition 

Consider the transformation which rotates 3D space around the z-axis: 

𝐀𝐀 = �
cos𝜃𝜃 − sin𝜃𝜃 0
sin𝜃𝜃 cos𝜃𝜃 0

0 0 1
� 

Any vector parallel to the z-axis is unchanged, and fulfils: 

𝐀𝐀𝐯𝐯 = 𝐯𝐯 

Therefore, the vectors parallel to the z-axis are an eigenvector with eigenvalue 𝜆𝜆 = 1: 

Eigenvectors Eigenvalue 
𝐱𝐱� and 𝐲𝐲� 𝐾𝐾 
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In fact, in general, any rotation around an axis 𝐧𝐧 will not modify the direction of vectors in the direction 
of the axis 𝐧𝐧, so that 𝐀𝐀𝐧𝐧 = 𝐧𝐧. So, any vector in span{𝐧𝐧} is an eigenvector with eigenvalue 𝜆𝜆 = 1.  

 

 

7) Example: ANISOTROPIC SCALING (easy case) – determine eigenvectors and eigenvalues by 
intuition 

Consider a transformation which stretches space by a factor of 3 along 𝑥𝑥, and by a factor 1
2
 along y. 

𝐀𝐀 = �3 0
0 1/2� 

Any vector parallel to 𝑥𝑥 will fulfil: 

𝐀𝐀𝐯𝐯 = 3𝐯𝐯. 

Any vector parallel to 𝑦𝑦 will fulfil: 

𝐀𝐀𝐯𝐯 = �1
2
� 𝐯𝐯. 

Therefore: 

 

 

8) Example: PROJECTION TO A LINE (easy case) – determine eigenvectors and eigenvalues by 
intuition 

Consider the transformation which projects the entire 2D space into the x-axis: 

𝐀𝐀 = �1 0
0 0� 

It is obvious that this transformation changes the direction of every vector except those that point 
along the 𝑥𝑥 axis for which 𝐀𝐀𝐯𝐯 = 𝐯𝐯 and, less obviously, those which point along the 𝑦𝑦 axis, which are 
squashed to zero and also fulfil 𝐀𝐀𝐯𝐯 = 𝟎𝟎𝐯𝐯 = 𝟎𝟎. Therefore, this transformation has two eigenvectors: 

 

Eigenvector Eigenvalue 
𝐳𝐳� 1 

 

Eigenvector Eigenvalue 
𝐧𝐧 1 

 

Eigenvectors Eigenvalues 
𝐱𝐱� 3 
𝐲𝐲� 1/2 

 

Eigenvectors Eigenvalue 
𝐱𝐱� 1 
𝐲𝐲� 0 
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9) Example: SKEW – determine eigenvectors and eigenvalues by intuition 

Consider the skew transformation: 

𝐀𝐀 = �1 1
0 1� 

This transformation skews vectors to the right. It however does not change vectors pointing purely 
along the 𝑥𝑥 axis. In fact 𝐀𝐀𝐱𝐱� = 1𝐱𝐱�. Therefore: 

 

 

NOTICE COMMON PATTERNS IN ALL PREVIOUS EXAMPLES (and always true in general): 

 

 

Example: 

𝐀𝐀 = �
| | | |

𝒜𝒜(𝐞𝐞1) 𝒜𝒜(𝐞𝐞2) 𝒜𝒜(𝐞𝐞3) 𝒜𝒜(𝐞𝐞4)
| | | |

� = �

∗ 0 ∗ 0
∗ 𝑎𝑎 ∗ 0
∗ 0 ∗ 0
∗ 0 ∗ 𝑏𝑏

� 

𝒜𝒜(𝐞𝐞2) =  0𝐞𝐞1 + 𝑎𝑎𝐞𝐞2 + 0𝐞𝐞3 + 0𝐞𝐞4 = 𝑎𝑎𝐞𝐞2, therefore 𝐞𝐞2 is an eigenvector with eigenvalue 𝑎𝑎. 

𝒜𝒜(𝐞𝐞4) =  0𝐞𝐞1 + 0𝐞𝐞2 + 0𝐞𝐞3 + 𝑏𝑏𝐞𝐞4 = 𝑏𝑏𝐞𝐞4 therefore 𝐞𝐞4 is an eigenvector with eigenvalue 𝑏𝑏. 

  

Eigenvectors Eigenvalue 
𝐱𝐱� 1 

 

• The eigenvectors are telling us valuable information about the transformation: the axis of 
rotation, the axis of projection, the axis of scaling, the direction parallel and normal to a mirror 
reflection, the direction of skew, … 

• The eigenvectors associated with each eigenvalue span an entire subspace (called an 
eigenspace) of the input space. Any vector in this subspace is an eigenvector.  

o This is due to linearity of the transformation: if 𝐯𝐯 is an eigenvector 𝐀𝐀𝐯𝐯 = 𝜆𝜆𝐯𝐯, then any 
scaled version of 𝐯𝐯 will be an eigenvector too: 𝐀𝐀(𝛼𝛼𝐯𝐯) = 𝜆𝜆(𝛼𝛼𝐯𝐯). 

o This means that the system of equations 𝐀𝐀𝐯𝐯 = 𝜆𝜆𝐯𝐯 always has either a single trivial 
solution 𝐯𝐯 = 0 when there are no eigenvectors, or it has infinite solutions, whole 
subspaces (infinite line, plane, etc.). 

• The eigenvectors whose eigenvalue is 0 are the null space of the linear transformation, as 
they are solutions to 𝐀𝐀𝐯𝐯 = 0𝐯𝐯 = 𝟎𝟎.  

o If an eigenvalue equal to 0 exists, the matrix is singular. 
• 𝑁𝑁 × 𝑁𝑁 matrices have at most 𝑁𝑁 linearly independent eigenvectors, others have less than 𝑁𝑁 

down to at least 1. 
• Whenever a column of the matrix has zeroes everywhere except on the diagonal term, the 

associated basis vector for that column is an eigenvector, whose eigenvalue is the number at 
the diagonal. This is trivial if you think about the columns of the matrix as 𝒜𝒜(𝐞𝐞�𝑖𝑖). 
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C. CALCULATION OF EIGENVECTORS AND EIGENVALUES 

Eigenvectors, as we have seen, are vectors such that 𝐀𝐀𝐯𝐯 = 𝜆𝜆𝐯𝐯. We need to solve that equation for any 
possible value of 𝜆𝜆 and 𝐯𝐯 (evidently 𝐀𝐀 must be a square matrix): 

𝐀𝐀𝐯𝐯 = 𝜆𝜆𝐯𝐯 

We want to write it as a system of equations, (matrix)*(unknowns) = (independent coefficients) 

𝐀𝐀𝐯𝐯 − 𝜆𝜆𝐯𝐯 = 𝟎𝟎 

𝐀𝐀𝐯𝐯 − 𝜆𝜆𝐈𝐈𝐯𝐯 = 𝟎𝟎 

𝐈𝐈 being the identity matrix, and the matrix transformation 𝜆𝜆𝐈𝐈 is identical to scaling the vector by 𝜆𝜆. 

(𝐀𝐀 − 𝜆𝜆𝐈𝐈)𝐯𝐯 = 𝟎𝟎 

 

FIRST: FIND THE EIGENVALUES 

Now we have it in the desired form. The matrix (𝐀𝐀 − 𝜆𝜆𝐈𝐈) acts as coefficients of the linear system of 
equations. This matrix can be seen as a new transformation. It looks like this: 

𝐀𝐀− 𝜆𝜆𝐈𝐈 = �

𝑎𝑎11 − 𝜆𝜆 𝑎𝑎12 ⋯ 𝑎𝑎1𝑁𝑁
𝑎𝑎21 𝑎𝑎22 − 𝜆𝜆 ⋯ 𝑎𝑎2𝑁𝑁
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑁𝑁1 𝑎𝑎𝑁𝑁2 ⋯ 𝑎𝑎𝑁𝑁𝑁𝑁 − 𝜆𝜆

� 

Earlier we proved that either there is a single trivial solution 𝐯𝐯 = 𝟎𝟎, which will happen when 
det(𝐀𝐀− 𝜆𝜆𝐈𝐈) ≠ 0, or there are infinite solutions (a whole subspace) when det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0. We are 
interested on the second case. 

 

Once we have found the 𝑁𝑁 eigenvalues 𝜆𝜆1,𝜆𝜆2,⋯ , 𝜆𝜆𝑁𝑁, we need to find the eigenvectors associated to 
each of them. 

SECOND: FIND THE EIGENVECTORS FOR EACH EIGENVALUE 

For each eigenvalue 𝜆𝜆𝑖𝑖 that we found, we need to solve the linear systems (𝐀𝐀− 𝜆𝜆𝑖𝑖𝐈𝐈)𝐯𝐯𝑖𝑖 = 𝟎𝟎 to find the 
corresponding eigenvectors. For example, we can use Gaussian elimination. 

We know that the system must have infinite solutions, because the determinant is zero: the solution 
will be a subspace, i.e. a span of at least one vector. This vector (or vectors) will be eigenvectors 𝐯𝐯𝑖𝑖 
associated to the eigenvalue 𝜆𝜆𝑖𝑖.  

Note that what is fixed for a given eigenvalue is the subspace, which is the solution to (𝐀𝐀 − 𝜆𝜆𝑖𝑖𝐈𝐈)𝐯𝐯𝑖𝑖 =
𝟎𝟎 (called the eigenspace). We have some freedom in choosing the vectors which span it. For example, 
we can always scale an eigenvector and it will still be an eigenvector of the same eigenvalue. 

det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 
𝑐𝑐𝑁𝑁𝜆𝜆𝑁𝑁 + 𝑐𝑐𝑁𝑁−1𝜆𝜆𝑁𝑁−1 + ⋯+ 𝑐𝑐1𝜆𝜆 + 𝑐𝑐0 = 0     [N-th degree polynomial] 

(𝜆𝜆 − 𝜆𝜆1)(𝜆𝜆 − 𝜆𝜆2)⋯ (𝜆𝜆 − 𝜆𝜆𝑁𝑁) = 0     [Factorised into 𝑁𝑁 complex roots (some can be repeated)] 
This is called the characteristic polynomial 𝑝𝑝(𝜆𝜆) of the matrix 𝐀𝐀. 

The roots {𝜆𝜆1,𝜆𝜆2,⋯ , 𝜆𝜆𝑁𝑁} are the 𝑵𝑵 eigenvalues (some can be repeated, called degenerate) 
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10) ISOTROPIC SCALING OF SPACE – determine eigenvectors and eigenvalues of the matrix 

𝐀𝐀 = �𝐾𝐾 0
0 𝐾𝐾�. 

First, find the eigenvalues by solving the characteristic polynomial: 

det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = �𝐾𝐾 − 𝜆𝜆 0
0 𝐾𝐾 − 𝜆𝜆� = (𝐾𝐾 − 𝜆𝜆)(𝐾𝐾 − 𝜆𝜆) = 0 

It has two degenerate roots, therefore two degenerate eigenvalues 𝜆𝜆1 = 𝜆𝜆2 = 𝐾𝐾. Now to find the 
eigenvectors, we need to find the span of solutions to the system: 

(𝐀𝐀 −𝐾𝐾𝐈𝐈)𝐯𝐯 = 𝟎𝟎 →   �0 0
0 0  �  00� 

No need to do gaussian elimination! Two columns, both without pivots. The solution has two degrees 
of freedom 𝑣𝑣1 = 𝛼𝛼 and 𝑣𝑣2 = 𝛽𝛽 so that 𝐯𝐯 = 𝛼𝛼(1,0)𝑇𝑇 + 𝛽𝛽(0,1)𝑇𝑇 which are the two eigenvectors. 

 

11) ANISOTROPIC SCALING (oriented along the axes) – determine eigenvectors and eigenvalues of 

the matrix 𝐀𝐀 = �3 0
0 1/2� 

First solve the characteristic polynomial det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = �
3 − 𝜆𝜆 0

0
1
2
− 𝜆𝜆� = (3 − 𝜆𝜆) �

1
2
− 𝜆𝜆� 

So the two eigenvalues are 𝜆𝜆1 = 3 and 𝜆𝜆2 = 1
2
. 

For eigenvalue 𝜆𝜆1 = 3: 

(𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = �
0 0

0 −
5
2
��

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

Clearly the first column has no pivot and is a free variable, so 𝑥𝑥1 = 𝛼𝛼 and 𝑥𝑥2 = 0. 

𝐱𝐱 = 𝛼𝛼 �1
0� = span{𝐯𝐯1} 

For eigenvalue 𝜆𝜆2 = 1
2
 : 

(𝐀𝐀 − 𝜆𝜆2𝐈𝐈)𝐱𝐱 = �5/2 0
0 0� �

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

Clearly the second column has no pivot and is a free variable, so 𝑥𝑥2 = 𝛼𝛼 and 𝑥𝑥1 = 0. 

𝐱𝐱 = 𝛼𝛼 �0
1� = span{𝐯𝐯2} 

 

Eigenvectors Eigenvalue 
𝐱𝐱� and 𝐲𝐲� 𝐾𝐾 

 

Eigenvector Eigenvalue 
(1,0)𝑇𝑇 3 
(0,1)𝑇𝑇 1/2 
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12) PROJECTION TO A LINE (easy case) – determine eigenvectors and eigenvalues of the matrix 

𝐀𝐀 = �1 0
0 0� 

First solve the characteristic polynomial det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = �1 − 𝜆𝜆 0
0 0 − 𝜆𝜆� = (1 − 𝜆𝜆)(0 − 𝜆𝜆) 

So the two eigenvalues are 𝜆𝜆1 = 1 and 𝜆𝜆2 = 0. 

For eigenvalue 𝜆𝜆1 = 1: 

(𝐀𝐀− 𝜆𝜆1𝐈𝐈)𝐱𝐱 = �0 0
0 −1� �

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

Clearly the first column has no pivot and is a free variable, so 𝑥𝑥1 = 𝛼𝛼 and 𝑥𝑥2 = 0. 

𝐱𝐱 = 𝛼𝛼 �1
0� = span{𝐯𝐯1} 

For eigenvalue 𝜆𝜆2 = 0 : 

(𝐀𝐀 − 𝜆𝜆2𝐈𝐈)𝐱𝐱 = �1 0
0 0� �

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

Clearly the second column has no pivot and is a free variable, so 𝑥𝑥2 = 𝛼𝛼 and 𝑥𝑥1 = 0. 

𝐱𝐱 = 𝛼𝛼 �0
1� = span{𝐯𝐯2} 

 

 

13) SKEW – determine eigenvectors and eigenvalues of the matrix  

𝐀𝐀 = �1 1
0 1� 

First solve the characteristic polynomial det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = �1 − 𝜆𝜆 1
0 1 − 𝜆𝜆� = (1 − 𝜆𝜆)(1 − 𝜆𝜆) 

So there is a double degenerate eigenvalue 𝜆𝜆1 = 𝜆𝜆2 = 1. The associated eigenvector can be obtained 
by solving: 

(𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = �0 1
0 0� �

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

Clearly the first column has no pivot and is a free variable, so 𝑥𝑥1 = 𝛼𝛼 and 𝑥𝑥2 = 0. 

𝐱𝐱 = 𝛼𝛼 �1
0� = span{𝐯𝐯1} 

 

Eigenvector Eigenvalue 
(1,0)𝑇𝑇 1 
(0,1)𝑇𝑇 0 

 

Eigenvector Eigenvalue 
(1,0)𝑇𝑇 1 

 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.5 (14) 

14) MIRROR REFLECTION WITH RESPECT TO 𝑥𝑥 = 𝑦𝑦 LINE – determine eigenvectors and eigenvalues 

of the matrix 𝐀𝐀 = �0 1
1 0�. 

First solve the characteristic polynomial det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = �0 − 𝜆𝜆 1
1 0 − 𝜆𝜆� = (0 − 𝜆𝜆)(0− 𝜆𝜆)− 1 = 𝜆𝜆2 − 1 = (𝜆𝜆 + 1)(𝜆𝜆 − 1) 

So the two eigenvalues are 𝜆𝜆1 = 1 and 𝜆𝜆2 = −1. 

For eigenvalue 𝜆𝜆1 = 1: 

(𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = �−1 1
1 −1� �

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

�−1 1
1 −1 � 00�

𝑅𝑅2+𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯� �−1 1
0 0 � 00� 

So the second column has no pivot and is a free variable, 𝑥𝑥2 = 𝛼𝛼, and from the first row 𝑥𝑥1 = 𝛼𝛼. 

𝐱𝐱 = 𝛼𝛼 �1
1� = span{𝐯𝐯1} 

For eigenvalue 𝜆𝜆2 = −1 : 

(𝐀𝐀 − 𝜆𝜆2𝐈𝐈)𝐱𝐱 = �1 1
1 1� �

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

�1 1
1 1 � 00�

𝑅𝑅2−𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯� �1 1
0 0 � 00� 

So the second column has no pivot and is a free variable, 𝑥𝑥2 = 𝛼𝛼 and from the first row 𝑥𝑥1 = −𝛼𝛼. 

𝐱𝐱 = 𝛼𝛼 �−1
1 � = span{𝐯𝐯2} 

 

As one would intuitively expect for this mirror reflection. It tells us the direction parallel (eigenvalue 
1) and normal (eigenvalue -1) to the mirror! Because vectors parallel to the mirror are unchanged, 
while vectors normal to the mirror are flipped. 

  

15) PROJECTION INTO THE LINE 𝑦𝑦 = 𝑚𝑚𝑥𝑥 – determine eigenvectors and eigenvalues of the matrix: 

𝐀𝐀(𝑚𝑚) =
1

1 + 𝑚𝑚2 �
1 𝑚𝑚
𝑚𝑚 𝑚𝑚2� 

 First solve the characteristic polynomial det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = ��

1
1 + 𝑚𝑚2 − λ

𝑚𝑚
1 + 𝑚𝑚2

𝑚𝑚
1 + 𝑚𝑚2

𝑚𝑚2

1 + 𝑚𝑚2 − 𝜆𝜆
�� = �

1
1 +𝑚𝑚2 − λ� �

𝑚𝑚2

1 + 𝑚𝑚2 − 𝜆𝜆� − �
𝑚𝑚

1 + 𝑚𝑚2�
2

= 0 

Eigenvector Eigenvalue 
(1,1)𝑇𝑇 1 

(−1,1)𝑇𝑇 −1 
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�
𝑚𝑚

1 +𝑚𝑚2�
2
− 𝜆𝜆

1
1 + 𝑚𝑚2 − 𝜆𝜆

𝑚𝑚2

1 +𝑚𝑚2 + 𝜆𝜆2 − �
𝑚𝑚

1 + 𝑚𝑚2�
2

= 0 

𝜆𝜆
−1 −𝑚𝑚2

1 + 𝑚𝑚2 + 𝜆𝜆2 = 0 

𝜆𝜆2 − 𝜆𝜆 = 0   →       𝜆𝜆(𝜆𝜆 − 1) = 0 

So the two eigenvalues are 𝜆𝜆1 = 1 and 𝜆𝜆2 = 0. (Shortcut: use trace and det of matrix to deduce that 
det(𝐀𝐀) = 𝜆𝜆1𝜆𝜆2 = 0 and trace(𝐀𝐀) = 𝜆𝜆1 + 𝜆𝜆2 = 1; properties taught later) 

For eigenvalue 𝜆𝜆1 = 1: 

(𝐀𝐀− 𝜆𝜆1𝐈𝐈)𝐱𝐱 = �

1
1 + 𝑚𝑚2 − 1

𝑚𝑚
1 +𝑚𝑚2

𝑚𝑚
1 + 𝑚𝑚2

𝑚𝑚2

1 +𝑚𝑚2 − 1
��

𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

�
−𝑚𝑚2

1 + 𝑚𝑚2
𝑚𝑚

1 + 𝑚𝑚2

𝑚𝑚
1 + 𝑚𝑚2

−1
1 + 𝑚𝑚2

 � 00�
𝑅𝑅2+�

1
𝑚𝑚
�𝑅𝑅1→𝑅𝑅2

�⎯⎯⎯⎯⎯⎯⎯⎯⎯� �
−𝑚𝑚2

1 + 𝑚𝑚2
𝑚𝑚

1 + 𝑚𝑚2

0 0
 � 00� 

So the second column has no pivot and is a free variable, 𝑥𝑥2 = 𝛼𝛼, and  

From the first row: −𝑚𝑚2𝑥𝑥1 + 𝑚𝑚𝛼𝛼 = 0 →  −𝑚𝑚𝑥𝑥1 + 𝛼𝛼 = 0 →   𝑥𝑥1 = 𝛼𝛼/𝑚𝑚 

𝐱𝐱 = 𝛼𝛼 �1/𝑚𝑚
1 � = span ��1/𝑚𝑚

1 �� = span ��1
𝑚𝑚�� = span{𝐯𝐯1} is our first eigenvector 

Notice that we are free to scale the eigenvectors to simplify the expression if we wish, as we did above.  

For eigenvalue 𝜆𝜆2 = 0 : 

(𝐀𝐀− 𝜆𝜆2𝐈𝐈)𝐱𝐱 = �

1
1 + 𝑚𝑚2

𝑚𝑚
1 + 𝑚𝑚2

𝑚𝑚
1 + 𝑚𝑚2

𝑚𝑚2

1 + 𝑚𝑚2

��
𝑥𝑥1
𝑥𝑥2� = 𝟎𝟎 

�

1
1 + 𝑚𝑚2

𝑚𝑚
1 +𝑚𝑚2

𝑚𝑚
1 + 𝑚𝑚2

𝑚𝑚2

1 +𝑚𝑚2

 � 00�
𝑅𝑅2−𝑚𝑚𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯⎯� �

1
1 + 𝑚𝑚2

𝑚𝑚
1 +𝑚𝑚2

0 0
 � 00� 

So the second column has no pivot and is a free variable, 𝑥𝑥2 = 𝛼𝛼 and 

From the first row: 𝑥𝑥1 + 𝑚𝑚𝛼𝛼 = 0 →   𝑥𝑥1 = −𝑚𝑚𝛼𝛼 

𝐱𝐱 = 𝛼𝛼 �−𝑚𝑚1 � = span ��−𝑚𝑚1 �� = span{𝐯𝐯2} is our second eigenvector 

 

Notice that, by finding the eigenvectors, we have found the direction of the line of projection (with 
eigenvalue 1 because vectors along that line are not changed) and the direction normal to the line of 
projection (with eigenvalue 0 because vectors in that direction are projected into the origin). 

Eigenvectors Eigenvalue 
(1,𝑚𝑚)T 1 

(−𝑚𝑚, 1)T 0 
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16) 2D ROTATION: Calculate the eigenvectors and eigenvalues for the matrix: 

𝐀𝐀 = �cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 �. 

Solution: First solve the characteristic polynomial det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

�cos𝜃𝜃 − 𝜆𝜆 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 − 𝜆𝜆� = (cos𝜃𝜃 − 𝜆𝜆)2 + sin2 𝜃𝜃 = 1 − 2𝜆𝜆 cos𝜃𝜃 + 𝜆𝜆2 

Quadratic polynomial with solutions: 

𝜆𝜆1,2 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑎𝑎
=

2 cos𝜃𝜃 ± √4 cos2 𝜃𝜃 − 4
2

=
2 cos𝜃𝜃 ± 2√− sin2 𝜃𝜃

2
= 𝑒𝑒±𝑖𝑖𝑖𝑖 

So that det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = �𝑒𝑒𝑖𝑖𝑖𝑖 − 𝜆𝜆��𝑒𝑒−𝑖𝑖𝑖𝑖 − 𝜆𝜆� = 0. The eigenvalues are the two roots: 𝜆𝜆1 = 𝑒𝑒𝑖𝑖𝑖𝑖 and 
𝜆𝜆2 = 𝑒𝑒−𝑖𝑖𝑖𝑖. The associated eigenvectors can then be obtained for each: 

For eigenvalue 𝜆𝜆1 = 𝑒𝑒𝑖𝑖𝑖𝑖: 

(𝐀𝐀− 𝜆𝜆1𝐈𝐈)𝐱𝐱𝟏𝟏 = 𝟎𝟎 

�cos𝜃𝜃 − 𝑒𝑒𝑖𝑖𝑖𝑖 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃 − 𝑒𝑒𝑖𝑖𝑖𝑖

� 𝐱𝐱𝟏𝟏 = 𝟎𝟎 

We don’t really need to go through Gauss elimination, because we know that the determinant is zero 
(as we imposed that as a condition for finding 𝜆𝜆1) so we know we have one degree of freedom which 
we can use straight away: 

𝑥𝑥12 = 𝛼𝛼 
𝑥𝑥11�cos𝜃𝜃 − 𝑒𝑒𝑖𝑖𝑖𝑖� − 𝑥𝑥12 sin𝜃𝜃 = 0 

Therefore: 𝑥𝑥11 = 𝛼𝛼 sin𝑖𝑖
cos𝑖𝑖−𝑒𝑒𝑖𝑖𝑖𝑖

= 𝛼𝛼
𝑒𝑒𝑖𝑖𝑖𝑖−𝑒𝑒−𝑖𝑖𝑖𝑖

2𝑖𝑖
𝑒𝑒𝑖𝑖𝑖𝑖+𝑒𝑒−𝑖𝑖𝑖𝑖

2 −𝑒𝑒𝑖𝑖𝑖𝑖
= −𝑖𝑖𝛼𝛼 𝑒𝑒𝑖𝑖𝑖𝑖−𝑒𝑒−𝑖𝑖𝑖𝑖

𝑒𝑒𝑖𝑖𝑖𝑖+𝑒𝑒−𝑖𝑖𝑖𝑖−2𝑒𝑒𝑖𝑖𝑖𝑖
= −𝑖𝑖𝛼𝛼 𝑒𝑒𝑖𝑖𝑖𝑖−𝑒𝑒−𝑖𝑖𝑖𝑖

−𝑒𝑒𝑖𝑖𝑖𝑖+𝑒𝑒−𝑖𝑖𝑖𝑖
= 𝑖𝑖𝛼𝛼. 

Written in vector form: 

𝐱𝐱 = 𝛼𝛼 �𝑖𝑖1� = span{𝐯𝐯1} 

For eigenvalue 𝜆𝜆2 = 𝑒𝑒−𝑖𝑖𝑖𝑖 we find, after an almost identical procedure: 

𝐱𝐱 = 𝛼𝛼 �−𝑖𝑖1 � = span{𝐯𝐯2} 

Therefore, the eigenvalues and eigenvectors are: 

 

Sometimes, the eigenvalues and eigenvectors of a real matrix can be complex (this usually 
happens with rotations). 

As a general rule for real matrices, when two eigenvalues are complex conjugates of one 
another, then the associated eigenvectors are also complex conjugates of one another. 

 

Eigenvector Eigenvalue 
(𝑖𝑖, 1)𝑇𝑇 𝑒𝑒𝑖𝑖𝑖𝑖 

(−𝑖𝑖, 1)𝑇𝑇 𝑒𝑒−𝑖𝑖𝑖𝑖 
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How is it possible that a rotation has eigenvectors? They are complex! 

We thought that rotation had no eigenvectors, but that is because our intuition was limited to real 
space. It turns out that rotations DO have complex vectors whose direction is left unchanged!  

Let’s check with an example. The rotation 𝜃𝜃 = 𝜋𝜋/2 (90 degree rotation counter-clockwise). 

𝐀𝐀 = �0 −1
1 0 � 

The two eigenvalues and eigenvectors are: 

𝜆𝜆1 = 𝑖𝑖  →    𝐯𝐯1 = � 1
−𝑖𝑖� 

𝜆𝜆2 = −𝑖𝑖  →    𝐯𝐯2 = �1
𝑖𝑖 � 

Indeed, we can check the result: 

𝐀𝐀𝐯𝐯1 = 𝜆𝜆1𝐯𝐯1   →   �0 −1
1 0 � � 1

−𝑖𝑖� = �𝑖𝑖1� = 𝑖𝑖 � 1
−𝑖𝑖� 

𝐀𝐀𝐯𝐯2 = 𝜆𝜆2𝐯𝐯2   →   �0 −1
1 0 � �1

𝑖𝑖 � = �−𝑖𝑖1 � = −𝑖𝑖 �1
𝑖𝑖 � 

  

17) ROTATION IN 3D – determine eigenvectors and eigenvalues of the matrix: 

𝐀𝐀 = �
cos𝜃𝜃 − sin𝜃𝜃 0
sin𝜃𝜃 cos𝜃𝜃 0

0 0 1
� 

 

Solution: First solve the characteristic polynomial det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

�
cos𝜃𝜃 − 𝜆𝜆 − sin𝜃𝜃 0

sin𝜃𝜃 cos𝜃𝜃 − 𝜆𝜆 0
0 0 1 − 𝜆𝜆

� = (1 − 𝜆𝜆)[(cos𝜃𝜃 − 𝜆𝜆)2 + sin2 𝜃𝜃] = (1 − 𝜆𝜆)[1 − 2𝜆𝜆 cos𝜃𝜃 + 𝜆𝜆2] 

The quadratic polynomial between square brackets has the solutions: 

𝜆𝜆1,2 =
−𝑏𝑏 ± √𝑏𝑏2 − 4𝑎𝑎𝑐𝑐

2𝑎𝑎
=

2 cos𝜃𝜃 ± √4 cos2 𝜃𝜃 − 4
2

=
2 cos𝜃𝜃 ± 2√− sin2 𝜃𝜃

2
= 𝑒𝑒±𝑖𝑖𝑖𝑖 

Therefore, the characteristic polynomial is: 

det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = �𝑒𝑒𝑖𝑖𝑖𝑖 − 𝜆𝜆��𝑒𝑒−𝑖𝑖𝑖𝑖 − 𝜆𝜆�(1 − 𝜆𝜆) = 0 

So, the eigenvalues are 𝜆𝜆1 = 𝑒𝑒𝑖𝑖𝑖𝑖, 𝜆𝜆2 = 𝑒𝑒−𝑖𝑖𝑖𝑖 and 𝜆𝜆3 = 1 

And the associated eigenvectors: 

For eigenvalue 𝜆𝜆1 = 𝑒𝑒𝑖𝑖𝑖𝑖: 

(𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = 𝟎𝟎 

�
cos𝜃𝜃 − 𝑒𝑒𝑖𝑖𝑖𝑖 − sin𝜃𝜃 0

sin𝜃𝜃 cos𝜃𝜃 − 𝑒𝑒𝑖𝑖𝑖𝑖 0
0 0 1 − 𝑒𝑒𝑖𝑖𝑖𝑖

��
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = 𝟎𝟎 
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We don’t really need to go through Gauss elimination, because we know that the determinant is zero 
(as we imposed that as a condition for finding 𝜆𝜆1) so we know we have one degree of freedom which 
we can use straight away. Which column? We know that the third column has a pivot. Therefore the 
first two columns must be linearly dependent and one will not have a pivot. (If you don’t trust this 
reasoning, go ahead and do gaussian elimination). The solution is: 

𝑥𝑥2 = 𝛼𝛼 

𝑥𝑥3 = 0 
𝑥𝑥1�cos𝜃𝜃 − 𝑒𝑒𝑖𝑖𝑖𝑖� − 𝑥𝑥2 sin𝜃𝜃 = 0 

Therefore: 𝑥𝑥1 = 𝛼𝛼 sin𝑖𝑖
cos𝑖𝑖−𝑒𝑒𝑖𝑖𝑖𝑖

= 𝛼𝛼
𝑒𝑒𝑖𝑖𝑖𝑖−𝑒𝑒−𝑖𝑖𝑖𝑖

2𝑖𝑖
𝑒𝑒𝑖𝑖𝑖𝑖+𝑒𝑒−𝑖𝑖𝑖𝑖

2 −𝑒𝑒𝑖𝑖𝑖𝑖
= −𝑖𝑖𝛼𝛼 𝑒𝑒𝑖𝑖𝑖𝑖−𝑒𝑒−𝑖𝑖𝑖𝑖

𝑒𝑒𝑖𝑖𝑖𝑖+𝑒𝑒−𝑖𝑖𝑖𝑖−2𝑒𝑒𝑖𝑖𝑖𝑖
= −𝑖𝑖𝛼𝛼 𝑒𝑒𝑖𝑖𝑖𝑖−𝑒𝑒−𝑖𝑖𝑖𝑖

−𝑒𝑒𝑖𝑖𝑖𝑖+𝑒𝑒−𝑖𝑖𝑖𝑖
= 𝑖𝑖𝛼𝛼. 

Written in vector form: 

𝐱𝐱 = 𝛼𝛼 �
𝑖𝑖
1
0
� = span{𝐯𝐯1} 

 

For eigenvalue 𝜆𝜆2 = 𝑒𝑒−𝑖𝑖𝑖𝑖 we find, after an almost identical procedure: 

𝐱𝐱 = 𝛼𝛼 �
−𝑖𝑖
1
0
� = span{𝐯𝐯2} 

For eigenvalue 𝜆𝜆3 = 1: 

(𝐀𝐀− 𝜆𝜆3𝐈𝐈)𝐱𝐱 = 𝟎𝟎 

�
cos𝜃𝜃 − 1 − sin𝜃𝜃 0

sin𝜃𝜃 cos𝜃𝜃 − 1 0
0 0 0

��
𝑥𝑥1
𝑥𝑥2
𝑥𝑥3
� = 𝟎𝟎 

This time, the third column has no pivot and so is our free variable, while the other two variables must 
be zero. So: 

𝐱𝐱 = 𝛼𝛼 �
0
0
1
� = span{𝐯𝐯3} 

Therefore, the eigenvectors and eigenvalues are:  

 

 

  

Eigenvector Eigenvalue 
(𝑖𝑖, 1,0)𝑇𝑇 𝑒𝑒𝑖𝑖𝑖𝑖 

(−𝑖𝑖, 1,0)𝑇𝑇 𝑒𝑒−𝑖𝑖𝑖𝑖 
(0,0,1)T 1 
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18) Find the eigenvectors and eigenvalues of the matrix �5 −2
2 0 �. 

 
Solution: First solve the characteristic polynomial det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 
 

det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 
 

�5 − 𝜆𝜆 −2
2 0 − 𝜆𝜆� = (5 − 𝜆𝜆)(−𝜆𝜆) + 4 = 𝜆𝜆2 − 5𝜆𝜆 + 4 = (𝜆𝜆 − 1)(𝜆𝜆 − 4) = 0 

 
Solutions are the eigenvalues: 𝜆𝜆1 = 1 and 𝜆𝜆2 = 4 
 
Now we solve the associated eigenvector for each eigenvalue (when solving this, we always know the 
solution must have free parameters, because the determinant is zero): 
 
For Eigenvalue 𝜆𝜆1 = 1: 

(𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = 0 

�5 − 1 −2
2 0 − 1� 𝐱𝐱 = 𝟎𝟎 

 
We solve by Gaussian elimination: 

�4 −2
2 −1 � 00� → �4 −2

0 0  � 00� 

 

One free variable is 𝑥𝑥2 = 𝛼𝛼 and from the first row: 𝑥𝑥1 = �1
2
� 𝛼𝛼. In vector form: 

𝐱𝐱 = 𝛼𝛼 �1/2
1 � = span ��1/2

1 �� = span{𝐯𝐯1} 

The solution is always a span, we can take any scaled version as a valid eigenvector 𝐯𝐯1 = �1
2� 

 
For Eigenvalue 𝜆𝜆2 = 4: 

(𝐀𝐀 − 𝜆𝜆2𝐈𝐈)𝐱𝐱 = 0 

�5 − 4 −2
2 0 − 4� 𝐱𝐱 = 𝟎𝟎 

 
We solve by Gaussian elimination: 

�1 −2
2 −4 � 00� → �1 −2

0 0  � 00� 

 
One free variable is 𝑥𝑥2 = 𝛼𝛼 and from the first row: 𝑥𝑥1 = 2𝛼𝛼. In vector form: 

𝐱𝐱 = 𝛼𝛼 �2
1� = span ��2

1�� = span{𝐯𝐯2} 

We can take any scaled version as a valid eigenvector. 
So we are finished. In summary, the eigenvectors and associated eigenvalues are: 
 

𝜆𝜆1 = 1 →   𝐯𝐯1 = (1,2)  
𝜆𝜆2 = 4 →   𝐯𝐯2 = (2,1)  

 
This was not at all something we could have seen from intuition, as it is a very “weird” linear 
transformation. We can visually check it is true in a geometric software. 
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19) Calculate the eigenvalues and eigenvectors of the following matrix: 

𝐀𝐀 =
1
3
�

2 2 −1
2 −1 2
−1 2 2

� 

Solution: First solve the characteristic polynomial det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues (be careful 
subtracting 𝐈𝐈 when the matrix is written with a pre-factor like 1/3) : 

�
1
3
�

2 − 3𝜆𝜆 2 −1
2 −1− 3𝜆𝜆 2
−1 2 2 − 3𝜆𝜆

��

= �
1
3
�
3

[(2 − 3𝜆𝜆)2(−1− 3𝜆𝜆) − 4 − 4 − 4(2 − 3𝜆𝜆) − 4(2− 3𝜆𝜆)− (−1 − 3𝜆𝜆)] = 0 

(1/3) [−4 + 12𝜆𝜆 − 9𝜆𝜆2 − 12𝜆𝜆 + 36𝜆𝜆2 − 27𝜆𝜆3 − 8 − 8 + 12𝜆𝜆 − 8 + 12𝜆𝜆 + 1 + 3𝜆𝜆] = 0 
(1/3)(−27𝜆𝜆3 + 27𝜆𝜆2 + 27𝜆𝜆 − 27) = 0 

−𝜆𝜆3 + 𝜆𝜆2 + 𝜆𝜆 − 1 = 0 
𝜆𝜆 = 1 is an obvious solution, so we can factorize out (1 − 𝜆𝜆): 

(1 − 𝜆𝜆)(𝜆𝜆2 − 1) = 0 
(1 − 𝜆𝜆)(1 − 𝜆𝜆)(−1− 𝜆𝜆) = 0 

So the eigenvalues are 𝜆𝜆1 = 𝜆𝜆2 = 1 (degenerate eigenvalues) and 𝜆𝜆3 = −1. 

Now calculate the associated eigenvectors for each eigenvalue: 

Case 𝜆𝜆1 = 𝜆𝜆2 = 1: 

Solve the system (𝐀𝐀 − 𝜆𝜆𝐈𝐈)𝐱𝐱 = 𝟎𝟎 with 𝜆𝜆 = 1. Use gaussian elimination on the augmented matrix: 

�
−1 2 −1
2 −4 2
−1 2 −1

  �  
0
0
0
�
𝑅𝑅2+2𝑅𝑅1→𝑅𝑅2
𝑅𝑅3−𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

−1 2 −1
0 0 0
0 0 0

  �  
0
0
0
� 

Therefore we have two free variables (two columns without pivot) and we can solve the eigenvector: 

𝑥𝑥2 = 𝛼𝛼, 𝑥𝑥3 = 𝛽𝛽, 𝑥𝑥1 = 2𝑥𝑥2 − 𝑥𝑥3 = 2𝛼𝛼 − 𝛽𝛽 

𝐱𝐱 = 𝛼𝛼 �
2
1
0
� + 𝛽𝛽 �

−1
0
1
� = span ��

2
1
0
� ,�

−1
0
1
�� = span{𝐯𝐯1,𝐯𝐯2} 

The eigenvalue was a double degenerate eigenvalue, and we obtained two associated eigenvectors. 

(two degrees of freedom, which means two eigenvectors, but they are not unique, as any two linearly 
independent vectors contained in the plane could be used as pairs of eigenvectors) 

Case 𝜆𝜆3 = −1: 

Solve the system (𝐀𝐀 − 𝜆𝜆𝐈𝐈)𝐱𝐱 = 𝟎𝟎 with 𝜆𝜆 = −1. Use gaussian elimination on the augmented matrix: 

�
5 2 −1
2 2 2
−1 2 5

  �  
0
0
0
�
𝑅𝑅2−(2/5)𝑅𝑅1→𝑅𝑅2
𝑅𝑅3+(1/5)𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� �

5 2 −1
0 6/5 12/5
0 12/5 24/5

  �  
0
0
0
�
𝑅𝑅3−2𝑅𝑅2→𝑅𝑅3
(5/6)𝑅𝑅2→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯��

5 2 −1
0 1 2
0 0 0

  �  
0
0
0
� 

Therefore we have one free variable (third column without pivot) and we can solve by inverse 
substitution: 
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𝑥𝑥3 = 𝛼𝛼,   𝑥𝑥2 = −2𝑥𝑥3 = −2𝛼𝛼,   𝑥𝑥1 = 1
5

(𝑥𝑥3 − 2𝑥𝑥2) = 1
5

(𝛼𝛼 + 4𝛼𝛼) = 𝛼𝛼 

𝐱𝐱 = 𝛼𝛼 �
1
−2
1
� = span ��

1
−2
1
�� = span{𝐯𝐯3} 

So, in summary: 

𝜆𝜆1,2 = 1 (degenerate eigenvalue) →  𝐯𝐯1,2 = �
2
1
0
� , �

−1
0
1
�  [or any other basis of that same plane] 

𝜆𝜆3 = −1  →  𝐯𝐯𝟑𝟑 = �
1
−2
1
� 

With this information, and noticing that 𝐯𝐯1 × 𝐯𝐯2 = 𝐯𝐯3, we see that the eigenvalue 1 is associated with 
a plane, and the eigenvalue -1 is associated with the normal to the plane. Therefore, the linear 
transformation corresponds to a mirror symmetry on the plane given by 𝐫𝐫 ⋅ 𝐯𝐯3 = 0. 

 

20) Calculate the eigenvalues and eigenvectors of the following matrix: 

𝐀𝐀 = �0 1
0 0� 

Solution: First solve the characteristic polynomial det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues 

𝑝𝑝(𝜆𝜆) = �−𝜆𝜆 1
0 −𝜆𝜆� = 𝜆𝜆2 = (0 − 𝜆𝜆)(0 − 𝜆𝜆) 

Solutions: 𝜆𝜆1,2 = 0 (double degenerate eigenvalue) 

Now calculate the associated eigenvectors by solving (𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = 0: 

�0 1
0 0  �  00� 

Free variable (first column has no pivot) 𝑥𝑥1 = 𝛼𝛼,   and 𝑥𝑥2 = 0 

Therefore: 𝐱𝐱 = 𝛼𝛼 �1
0� = span ��1

0�� (one single eigenvector) 

So in summary: 𝜆𝜆1,2 = 0  →    𝐯𝐯1 = �1
0� 
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Table with selection of previous examples: 

 

 

Important theorems about eigenvectors/eigenvalues (as illustrated with the examples above): 

 

  

• The characteristic polynomial always has 𝑁𝑁 complex roots, and therefore 𝑁𝑁 eigenvalues, but 
some of the roots can be repeated roots: these are called degenerate eigenvalues. 

o The number of times which a degenerate eigenvalue is repeated is called algebraic 
multiplicity of the eigenvalue. 

o The number of independent eigenvectors obtained from a given eigenvalue is called 
the geometric multiplicity of the eigenvalue.  

For each eigenvalue:   1 ≤ Geometric multiplicity ≤ Algebraic multiplicity.   

This means that an eigenvalue with algebraic multiplicity 𝑚𝑚 can give rise to anything 
between 1 and 𝑚𝑚 eigenvectors.  

 
• Eigenvalues which are different always give rise to linearly independent eigenvectors. 

Matrix 𝐀𝐀𝑁𝑁×𝑁𝑁 has 𝑁𝑁 
different (non-degenerate) 

eigenvalues 

⟹
⇍ 

𝐀𝐀 has exactly 𝑁𝑁 independent 
eigenvectors (an eigenbasis) ⟺ 𝐀𝐀 is diagonalizable 

 
• The determinant of a matrix is equal to the product of all its eigenvalues (counting 

degenerate eigenvalues 𝑚𝑚 times, where 𝑚𝑚 is their multiplicity). 
• The trace of a matrix is equal to the sum of all its eigenvalues (again counting degenerate 

eigenvalues 𝑚𝑚 times) 
 

• The eigenvalues of a triangular matrix are exactly the elements of the diagonal. 
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Some proofs of the above theorems: 

• If all eigenvalues are different, then all eigenvectors are linearly independent: 

Consider eigenvalues 𝜆𝜆𝑖𝑖 and eigenvectors 𝐯𝐯𝑖𝑖 for 𝑖𝑖 = 1,2, … ,𝑝𝑝. Remember that the eigenvectors are 
linearly independent if and only if 𝐰𝐰 = �𝑐𝑐1𝐯𝐯1 + 𝑐𝑐2𝐯𝐯2 + ⋯+ 𝑐𝑐𝑝𝑝𝐯𝐯𝑝𝑝� = 0 has only the trivial solution 
𝑐𝑐𝑖𝑖 = 0. 

Let’s prove that 𝑐𝑐1 = 0 (later we will prove the same for 𝑐𝑐2, 𝑐𝑐3, … ). Consider the following matrix 
product: 

𝐌𝐌1 = (𝐀𝐀 − 𝜆𝜆2𝐈𝐈)(𝐀𝐀− 𝜆𝜆3𝐈𝐈)⋯ (𝐀𝐀− 𝜆𝜆𝑝𝑝𝐈𝐈) 

Since matrices (𝐀𝐀 − 𝜆𝜆𝑖𝑖𝐈𝐈) and �𝐀𝐀 − 𝜆𝜆𝑗𝑗𝐈𝐈� commute [check it], the above matrix product can always be 
reordered to move any desired (𝐀𝐀− 𝜆𝜆𝑖𝑖𝐈𝐈) term to the right of the product. Now consider multiplying 
this matrix 𝐌𝐌1 times the arbitrary linear combination of the eigenvectors: 

𝐌𝐌1𝐰𝐰 = 𝐌𝐌1(𝑐𝑐1𝐯𝐯1 + 𝑐𝑐2𝐯𝐯2 + ⋯+ 𝑐𝑐𝑝𝑝𝐯𝐯𝑝𝑝) 

Notice that (𝐀𝐀− 𝜆𝜆𝑖𝑖𝐈𝐈)𝐯𝐯𝑗𝑗 = 𝐀𝐀𝐯𝐯𝑗𝑗 − 𝜆𝜆𝑖𝑖𝐯𝐯𝑗𝑗 = �𝜆𝜆𝑗𝑗 − 𝜆𝜆𝑖𝑖�𝐯𝐯𝑗𝑗. Since we can always reorder the products on 𝐌𝐌 
we can make sure that each eigenvector is first multiplied by its corresponding term �𝐀𝐀 − 𝜆𝜆𝑗𝑗𝐈𝐈�𝐯𝐯𝑗𝑗 =
�𝜆𝜆𝑗𝑗 − 𝜆𝜆𝑗𝑗�𝐯𝐯𝑗𝑗 = 0. So all terms go to zero except the 𝐯𝐯1 term because 𝐌𝐌1 does not include (𝐀𝐀− 𝜆𝜆1𝐈𝐈): 

𝐌𝐌1𝐰𝐰 = 𝑐𝑐1𝐌𝐌1𝐯𝐯1 

But applying the property (𝐀𝐀− 𝜆𝜆𝑖𝑖𝐈𝐈)𝐯𝐯1 = (𝜆𝜆1 − 𝜆𝜆𝑖𝑖)𝐯𝐯1 successively for each term in 𝐌𝐌1, we get that: 

𝐌𝐌1𝐰𝐰 = 𝑐𝑐1(𝜆𝜆1 − 𝜆𝜆2)(𝜆𝜆1 − 𝜆𝜆3)⋯�𝜆𝜆1 − 𝜆𝜆𝑝𝑝�𝐯𝐯1 

Clearly, if all eigenvalues are different, the only way to have 𝐰𝐰 = 0 is if 𝑐𝑐1 = 0. 

We can prove the same for all other 𝑐𝑐𝑘𝑘 by using 𝐌𝐌𝑘𝑘 = ∏ (𝐀𝐀− 𝜆𝜆𝑖𝑖𝐈𝐈) 
𝑖𝑖≠𝑘𝑘 . 

Therefore, all 𝑐𝑐𝑘𝑘 = 0 for 𝐰𝐰 = 0, and so the eigenvectors are linearly independent. 

 

 

• The determinant of a matrix is equal to the product of all its eigenvalues: 

Consider the characteristic polynomial: 

𝑝𝑝(𝜆𝜆) = det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = (𝜆𝜆1 − 𝜆𝜆)(𝜆𝜆2 − 𝜆𝜆)⋯ (𝜆𝜆𝑁𝑁 − 𝜆𝜆)   

And now consider the case when 𝜆𝜆 = 0: 

⟹    𝑝𝑝(𝜆𝜆 = 0) = det𝐀𝐀 = 𝜆𝜆1 ⋅ 𝜆𝜆2 ⋅ … ⋅ 𝜆𝜆𝑁𝑁 
 

 

• The eigenvalues of a triangular matrix are exactly the elements of the diagonal. 

To prove the last statement, realise that the determinant of a triangular matrix is equal to the product 
of the diagonal elements, and if 𝐀𝐀 is triangular, then so is the matrix (𝐀𝐀 − 𝜆𝜆𝐈𝐈). Therefore:      𝑝𝑝(𝜆𝜆) =
det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = (𝑎𝑎11 − 𝜆𝜆)(𝑎𝑎22 − 𝜆𝜆)⋯ (𝑎𝑎𝑁𝑁𝑁𝑁 − 𝜆𝜆). Therefore 𝜆𝜆𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖. 
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D. DIAGONALIZATION OF A MATRIX USING ITS EIGENBASIS 

Sometimes, we can use knowledge of the eigenvectors of a matrix to “diagonalize it”. This is best 
understood through examples. 

 

21) Consider the previous example for anisotropic scaling: 

𝐌𝐌 = �5 −2
2 0 � 

 

Do a change of basis so that we use the eigenvectors as the basis. What do you notice? 

{𝐱𝐱�, 𝐲𝐲�} → {𝐯𝐯1 = (2,1), 𝐯𝐯2 = (1,2)} 

In this basis, the linear transformation should look very simple because it will simply scale the basis 
vectors. Let’s do it. Let’s compute the matrices which change the basis {𝐯𝐯1,𝐯𝐯2} ↔ {𝐱𝐱�, 𝐲𝐲�}. 

𝐀𝐀 = �
| |
𝐯𝐯1 𝐯𝐯2
| |

� = �2 1
1 2� translates basis {𝐯𝐯1,𝐯𝐯2} → {𝐱𝐱�,𝐲𝐲�} 

𝐀𝐀−1 = 1
3
� 2 −1
−1 2 �, calculated by doing the inverse, translates basis {𝐱𝐱�,𝐲𝐲�} → {𝐯𝐯1,𝐯𝐯2} 

And now let’s convert our linear transformation 𝐌𝐌 into the language of basis {𝐯𝐯1,𝐯𝐯2} 

𝐌𝐌′ = 𝐀𝐀−1𝐌𝐌𝐀𝐀 =
1
3
� 2 −1
−1 2 � �5 −2

2 0 � �2 1
1 2� = �4 0

0 1� 

Not surprisingly, using the eigenvectors as our basis, the matrix is now diagonal! And the elements 
of the diagonal are simply given by the eigenvalues associated to each of the eigenvectors. 

 

  

Eigenvectors Eigenvalue 
(2,1)T 4 
(1,2)T 1 

 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.5 (25) 

22) Consider the matrix for projection onto the line 𝑦𝑦 = 𝑚𝑚𝑥𝑥 

𝐌𝐌 =
1

1 + 𝑚𝑚2 �
1 𝑚𝑚
𝑚𝑚 𝑚𝑚2� 

 

Change the basis of this matrix to use the eigenvectors as basis. 

We begin by finding the matrices for change of basis: 

𝐀𝐀 = �
| |
𝐯𝐯1 𝐯𝐯2
| |

� = �1 −𝑚𝑚
𝑚𝑚 1 � translates basis {𝐯𝐯1,𝐯𝐯2} → {𝐱𝐱�, 𝐲𝐲�} 

𝐀𝐀−1 = 1
1+𝑚𝑚2 �

1 𝑚𝑚
−𝑚𝑚 1 � translates basis {𝐱𝐱�, 𝐲𝐲�} → {𝐯𝐯1,𝐯𝐯2} 

Therefore we can convert our linear transformation 𝐌𝐌 into the language of basis {𝐯𝐯1,𝐯𝐯2} 

𝐌𝐌′ = 𝐀𝐀−1𝐌𝐌𝐀𝐀 =
1

1 +𝑚𝑚2 �
1 𝑚𝑚
−𝑚𝑚 1 �

1
1 + 𝑚𝑚2 �

1 𝑚𝑚
𝑚𝑚 𝑚𝑚2� �

1 −𝑚𝑚
𝑚𝑚 1 � 

Let’s do this in steps: 

�1 𝑚𝑚
𝑚𝑚 𝑚𝑚2� �

1 −𝑚𝑚
𝑚𝑚 1 � = �1 + 𝑚𝑚2 0

𝑚𝑚 + 𝑚𝑚3 0
� 

� 1 𝑚𝑚
−𝑚𝑚 1 � �

1 + 𝑚𝑚2 0
𝑚𝑚 + 𝑚𝑚3 0

� = �1 + 2𝑚𝑚2 + 𝑚𝑚4 0
0 0

� 

1
1 + 𝑚𝑚2

1
1 + 𝑚𝑚2 �

1 + 2𝑚𝑚2 + 𝑚𝑚4 0
0 0

� = �1 0
0 0� 

Therefore: 

𝐌𝐌′ = 𝐀𝐀−1𝐌𝐌𝐀𝐀 = �1 0
0 0� 

Again, this should not be surprising. In the basis ��1
𝑚𝑚� , �−𝑚𝑚1 �� the first basis vector is along the line 

of projection, and is left unchanged under transformation, while the second vector is orthogonal to 
the line of projection and is therefore projected to zero. 

The matrix has been diagonalized, with the diagonal elements corresponding to the eigenvalues of 
each eigenvector. 

 

  

Eigenvectors Eigenvalue 
(1,𝑚𝑚)T 1 

(−𝑚𝑚, 1)T 0 
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DIAGONALIZABLE MATRICES 

 

 

Diagonalization of matrices can be done whenever we can use the eigenvectors as a basis, called an 
eigenbasis. This means that there must be enough eigenvectors to span the whole space. 

 

When that condition holds, we can create an invertible change-of-basis matrix 𝐀𝐀 to change the basis 
into the eigenbasis, and so we can write the matrix as a diagonal matrix: 𝐃𝐃 = 𝐀𝐀−1𝐌𝐌𝐀𝐀, where 𝐀𝐀 is a 
matrix which contains the eigenvectors as its columns, and 𝐃𝐃 is a diagonal matrix containing the 
eigenvalues as the main diagonal.  This means that a diagonalizable matrix can be completely defined 
via its eigenvectors and eigenvalues as follows: 

 

                  

A matrix is said to be diagonalizable if you can find a similar matrix that is diagonal.  
That is, there exists a basis in which the transformation is represented by a diagonal matrix. 

Diagonal matrices 𝐃𝐃 represent a scaling (stretch/squeeze/flip/complex-phase-change) along each 
of the N basis vector directions.  By definition 𝐃𝐃𝐯𝐯𝑖𝑖 = 𝜆𝜆𝑖𝑖𝐯𝐯𝒊𝒊 these directions must be eigenvectors 
𝐯𝐯 of the matrix, and the scaling factors will be the corresponding eigenvalues 𝜆𝜆. 

If a matrix is similar (technical term) to a diagonal matrix, it represents exactly the same 
transformation but expressed in a basis which does not coincide with the directions of scaling. 

 

An 𝑁𝑁 × 𝑁𝑁 matrix is diagonalizable ⟺ it has 𝑁𝑁 linearly independent eigenvectors (an eigenbasis) 

 

𝐌𝐌 = 𝐀𝐀𝐃𝐃𝐀𝐀−1 

𝐌𝐌 = �
| |  |
𝐯𝐯1 𝐯𝐯2 … 𝐯𝐯𝑁𝑁
| |  |

��

𝜆𝜆1 0 … 0
0 𝜆𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝜆𝑁𝑁

��
| |  |
𝐯𝐯1 𝐯𝐯2 … 𝐯𝐯𝑁𝑁
| |  |

�

−1

 

where 𝐯𝐯𝑖𝑖 are the N eigenvectors of 𝐌𝐌, each with corresponding eigenvalue 𝜆𝜆𝑖𝑖. 
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Since 𝐃𝐃 is diagonal, it is obvious that det𝐃𝐃 = 𝜆𝜆1 × 𝜆𝜆2 ×⋯× 𝜆𝜆𝑁𝑁 is the product of the eigenvectors. 
But we know that det𝐌𝐌 = det𝐃𝐃 because they represent the same transformation, therefore:  

 

These properties are true even for matrices that are not diagonalizable, as mentioned earlier, but here 
we proved it for diagonalizable ones. 

ADVANTAGES OF DIAGONAL MATRICES 

Diagonal matrices are very useful because it is very easy to do calculations with them.  

 

- Following the above, two diagonal matrices always commute 𝐀𝐀𝐀𝐀 = 𝐀𝐀𝐀𝐀. 
- Following the above, raising a diagonal matrix to the n-th power becomes trivial: 

𝐃𝐃𝑛𝑛 = [diag(𝜆𝜆1,𝜆𝜆2,⋯ , 𝜆𝜆𝑁𝑁)]𝑛𝑛 = diag(𝜆𝜆1𝑛𝑛,𝜆𝜆2𝑛𝑛,⋯ , 𝜆𝜆𝑁𝑁𝑛𝑛 ) 

�

𝜆𝜆1 0 … 0
0 𝜆𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝜆𝑁𝑁

�

𝑛𝑛

= �

𝜆𝜆1𝑛𝑛 0 … 0
0 𝜆𝜆2𝑛𝑛 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝜆𝑁𝑁𝑛𝑛

� 

While raising a non-diagonal matrix to an n-th power 𝐌𝐌𝑛𝑛 is a slow process. This suggests a fast-easy 
way to compute the 𝑛𝑛-th power of a matrix for huge values of 𝑛𝑛: 

 

Therefore, we can compute the 𝑛𝑛-th power of a matrix by doing: 

𝐌𝐌𝑛𝑛 = 𝐀𝐀𝐃𝐃𝑛𝑛𝐀𝐀−1  

The determinant of an 𝑁𝑁 × 𝑁𝑁 matrix is equal to the product of its 𝑁𝑁 eigenvalues (some may be 
repeated). The trace of an 𝑁𝑁 × 𝑁𝑁 matrix is equal to the sum of its 𝑁𝑁 eigenvalues. 

 

- The determinant of a diagonal matrix is equal to the product of all diagonal elements. 
- The product of diagonal matrices is simply the product of the individual entries. 
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23) Diagonalize matrix 𝐀𝐀 (reflection with respect to the 𝑦𝑦 = 𝑥𝑥 line) and hence calculate its 𝑛𝑛-th 
power 𝐀𝐀𝑛𝑛: 

𝐀𝐀 = �0 1
1 0� 

Solution:  

Eigenvalues and eigenvectors of this matrix are, from a previous problem: 

𝜆𝜆1 = 1 →   𝐯𝐯1 = (1,1)𝑇𝑇 
𝜆𝜆2 = −1 →   𝐯𝐯2 = (−1,1)𝑇𝑇 

The two eigenvectors are linearly independent and form an eigenbasis, so we can change the basis of 
matrix 𝐀𝐀 to the eigenbasis. For that, we use the change-of-basis matrix, and its inverse (trivial for a 
2 × 2 matrix): 

𝐒𝐒 = �
| |
𝐯𝐯1 𝐯𝐯2
| |

� = �1 −1
1 1 �   →      𝐒𝐒−1 =

1
2
� 1 1
−1 1� 

Such that the matrix in the new basis is given by the similarity transformation 

𝐀𝐀′ = 𝐒𝐒−1𝐀𝐀𝐒𝐒 =
1
2
� 1 1
−1 1� �

0 1
1 0� �

1 −1
1 1 � =

1
2
� 1 1
−1 1� �

1 1
1 −1� = �1 0

0 −1� = 𝐃𝐃 

Which is, as we expected, a diagonal matrix with the eigenvectors as its diagonal elements. 

Hence, the matrix can be diagonalized: 

𝐀𝐀 = 𝐒𝐒𝐃𝐃𝐒𝐒−1 

𝐀𝐀 = �1 −1
1 1 � �1 0

0 −1�
1
2
� 1 1
−1 1� 

This allows us to calculate the 𝑛𝑛-th power of the matrix: 

𝐀𝐀𝑛𝑛 = (𝐒𝐒𝐃𝐃𝐒𝐒−1)(𝐒𝐒𝐃𝐃𝐒𝐒−1)(𝐒𝐒𝐃𝐃𝐒𝐒−1)⋯ (𝐒𝐒𝐃𝐃𝐒𝐒−1) = 𝐒𝐒𝐃𝐃𝑛𝑛𝐒𝐒−1 

𝐀𝐀𝑛𝑛 = �1 −1
1 1 � �1 0

0 −1�
𝑛𝑛 1

2
� 1 1
−1 1� 

𝐀𝐀𝑛𝑛 = �1 −1
1 1 � �1 0

0 (−1)𝑛𝑛�
1
2
� 1 1
−1 1� 

𝐀𝐀𝑛𝑛 =
1
2
�1 −1

1 1 � � 1 1
(−1)𝑛𝑛+1 (−1)𝑛𝑛� 

𝐀𝐀𝑛𝑛 =
1
2
�1 + (−1)𝑛𝑛+2 1 + (−1)𝑛𝑛+1

1 + (−1)𝑛𝑛+1 1 + (−1)𝑛𝑛 � = �
�1 0

0 1� , 𝑛𝑛 even

�0 1
1 0� , 𝑛𝑛 odd

 

i.e. the powers of 𝐀𝐀 alternate between 𝐀𝐀 and 𝐈𝐈, which is what one expects for a reflection symmetry 
transformation! 

Interesting note: the expression for 𝐀𝐀𝑛𝑛 also works for 𝐀𝐀−1 when 𝑛𝑛 = −1. Indeed, it tells us that 𝐀𝐀−1 =
𝐀𝐀, as one would expect for a mirror symmetry operation, to be its own inverse. 
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24) Compute the 1000-th power of matrix 𝐌𝐌 = �5/2 −1
1 0 � 

Knowing that the eigenvectors and eigenvalues are: 

 

The diagonalization of the matrix can be made by expressing the transformation in the basis of the 
eigenvectors, as done in a previous problem: 

𝐃𝐃 = 𝐀𝐀−1𝐌𝐌𝐀𝐀 =
1
3
� 2 −1
−1 2 ����������
𝐀𝐀−1

�
5
2

−1
1 0

�
�������

𝐌𝐌

�2 1
1 2������
𝐀𝐀

= �2 0
0 1/2� 

As expected, 𝐃𝐃 contains the eigenvalues. Now, matrix 𝐃𝐃 represents the same linear transformation as 
𝐌𝐌, but in a different basis. Therefore, the linear transformation that results from applying 𝐌𝐌 
successively 𝑛𝑛 times is equivalent to applying 𝐃𝐃 successively 𝑛𝑛 times (in the eigenvector basis). 
Multiplying diagonal matrices by themselves is simply multiplying the coefficients of the diagonal, 
therefore: 

𝐃𝐃𝑛𝑛 = �2 0
0 1/2�

𝒏𝒏
= �2𝑛𝑛 0

0 2−𝑛𝑛� 

And the associated matrix in the original {𝐱𝐱�, 𝐲𝐲�} basis is, simply: 

𝐌𝐌𝑛𝑛 = 𝐀𝐀𝐃𝐃𝑛𝑛𝐀𝐀−1 

This can be proven:  𝐌𝐌𝑛𝑛 = (𝐀𝐀𝐃𝐃𝐀𝐀−1)𝑛𝑛 = 𝐀𝐀𝐃𝐃𝐀𝐀−1𝐀𝐀���
𝐈𝐈

𝐃𝐃𝐀𝐀−1𝐀𝐀���
𝐈𝐈

𝐃𝐃𝐀𝐀−1⋯𝐀𝐀𝐃𝐃𝐀𝐀−1 = 𝐀𝐀𝐃𝐃𝑛𝑛𝐀𝐀−1 

= �2 1
1 2������
𝐀𝐀

�2𝑛𝑛 0
0 2−𝑛𝑛��������

𝐃𝐃𝑛𝑛

1
3
� 2 −1
−1 2 ����������
𝐀𝐀−1

 

=
1
3
�2 1

1 2� �
2𝑛𝑛+1 −2𝑛𝑛
−2−𝑛𝑛 2−𝑛𝑛+1

� 

=
1
3
� 2𝑛𝑛+2 − 2−𝑛𝑛 −2𝑛𝑛+1 + 2−𝑛𝑛+1

2𝑛𝑛+1 − 2−𝑛𝑛+1 −2𝑛𝑛 + 2−𝑛𝑛+2
� 

So, the 𝑛𝑛 = 1000 case results in: 

𝐌𝐌1000 =
1
3
�21002 − 2−1000 −21001 + 2−999

21001 − 2−999 −21000 + 2−998
� 

Which would have been so difficult to find directly in the {𝐱𝐱�, 𝐲𝐲�} basis. 

---- 

One of the beauties of mathematics is noticing how everything comes together so nicely... Now that 
we have an expression for 𝐌𝐌𝑛𝑛 I could ask, can we calculate the inverse by using 𝑛𝑛 = −1? 

Of course we can! Logically, the inverse of a diagonal matrix is just calculating the inverse of its 

diagonal entries. 𝐌𝐌−1 = 1
3
�21 − 21 −20 + 22

20 − 22 −2−1 + 23
� = 1

3
� 0 3
−3 15/2� = � 0 1

−1 5/2� 

Eigenvectors Eigenvalue 
(2,1)T 2 
(1,2)T 1/2 
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FUNCTIONS OF MATRICES 

We now know how to calculate 𝐌𝐌𝑛𝑛. With this we can do something fascinating.  

We know that a function 𝑓𝑓(𝑥𝑥) ≈ 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯ can be written as a Taylor expansion. 

So we can then define 𝑓𝑓(𝐌𝐌) = 𝑎𝑎0 + 𝑎𝑎1𝐌𝐌 + 𝑎𝑎2𝐌𝐌2 + ⋯ and we know exactly how to compute it. 
Therefore we can compute any function applied to 𝐌𝐌.  

For example, we can calculate sin𝐌𝐌, cos𝐌𝐌, exp𝐌𝐌, etc. Amazing! 

25) Calculate exp(𝐌𝐌) for the matrix: 

𝐌𝐌 = �5/2 −1
1 0 � 

Solution: we know the Taylor expansion for the exponential function: 

𝑒𝑒𝑥𝑥 = 1 + 𝑥𝑥 +
𝑥𝑥2

2!
+
𝑥𝑥3

3!
+⋯ 

Therefore, we can define: 

𝑒𝑒𝐌𝐌 = 1 + 𝐌𝐌 +
𝐌𝐌2

2!
+
𝐌𝐌3

3!
+ ⋯ 

But instead of doing this calculation in the {𝐱𝐱�, 𝐲𝐲�} basis which would be so difficult, we can do it in the 
basis where 𝐌𝐌 is diagonal. Therefore: 

𝐃𝐃 = �2 0
0 1/2�  →  𝑒𝑒𝐃𝐃 = 1 + 𝐃𝐃 +

𝐃𝐃2

2!
+
𝐃𝐃3

3!
+⋯ = �

1 + 2 + ⋯ 0

0 1 +
1
2

+ ⋯� = �𝑒𝑒
2 0

0 𝑒𝑒1/2� 

Switching back to the  {𝐱𝐱�, 𝐲𝐲�} basis 

�𝑒𝑒𝐌𝐌� = 𝐀𝐀�𝑒𝑒𝐃𝐃�𝐀𝐀−1 = �2 1
1 2������
𝐀𝐀

�𝑒𝑒
2 0

0 𝑒𝑒1/2��������
𝑒𝑒𝐃𝐃

1
3
� 2 −1
−1 2 ����������
𝐀𝐀−1

=
1
3�

−√𝑒𝑒 + 4𝑒𝑒2 −2�−√𝑒𝑒 + 𝑒𝑒2�
2�−√𝑒𝑒 + 𝑒𝑒2� 4√𝑒𝑒 − 𝑒𝑒2

� 

26) Calculate √𝐌𝐌, the square root of the matrix, knowing from a previous problem that 

𝐌𝐌𝑛𝑛 =
1
3
� 2𝑛𝑛+2 − 2−𝑛𝑛 −2𝑛𝑛+1 + 2−𝑛𝑛+1

2𝑛𝑛+1 − 2−𝑛𝑛+1 −2𝑛𝑛 + 2−𝑛𝑛+2
� 

Rather than going through the Taylor path, we simply use 𝑛𝑛 = 1/2. This gives us 

√𝐌𝐌 = 𝐌𝐌
1
2  =

1
3
� 2

1
2+2 − 2−

1
2 −2

1
2+1 + 2−

1
2+1

2
1
2+1 − 2−

1
2+1 −2

1
2 + 2−

1
2+2

� =
1
3
�

7
√2

−√2

√2 √2
� 

Notice how remarkable it is that, indeed, √𝐌𝐌 √𝐌𝐌 = 𝐌𝐌 

1
3
�

7
√2

−√2

√2 √2
�

1
3
�

7
√2

−√2

√2 √2
� = �5/2 −1

1 0 � 

Also notice that 𝐌𝐌0 = 𝐈𝐈 and 𝐌𝐌1 = 𝐌𝐌. In fact this is how I animate transformations in the interactive 
presentations! With a slider 𝑡𝑡, by showing the transformation 𝐌𝐌𝑡𝑡 for 𝑡𝑡 ∈ [0,1].  
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E. EIGENVECTORS OF SPECIAL TYPES OF MATRICES 

Special types of matrices have interesting properties in their eigenvectors. The following Venn diagram 
summarizes the special types of matrices most widely used: 

 

Remember that this is a Venn diagram, therefore all unitary and all Hermitian matrices are normal. If 
the matrix is real, then 𝐀𝐀† = 𝐀𝐀T, so all real symmetric matrices are Hermitian, and all real orthogonal 
matrices are unitary. All properties of normal matrices apply to all the sub-types. 

 

NORMAL MATRICES: 

The following important theorem about the eigenvectors of normal matrices exists: 

 

(because 𝐔𝐔 has orthonormal eigenvectors as its columns and is thus a unitary matrix 𝐔𝐔−1 = 𝐔𝐔†) 

See book [Riley, Hobson, Bence] for proof of part of it (a general proof is out of the scope) 

If all eigenvalues are different (non-degenerate) then the eigenvectors of a normal matrix are 
automatically orthogonal, not only independent as for any other matrix. If some eigenvalues are 
degenerate, a normal matrix ensures they will have a geometric multiplicity equal to the algebraic 
multiplicity, not lower: the eigenvectors for degenerate eigenvalues are not unique, they can be 
chosen arbitrarily to span the necessary eigenspace. The theorem above tells us that the eigenspace 
is always orthogonal to other eigenvectors, so the eigenvectors can be chosen to be orthogonal to all 
other eigenvectors.  

𝐀𝐀 is normal 
(𝐀𝐀𝐀𝐀† = 𝐀𝐀†𝐀𝐀)          

���    

All eigenvectors of 𝐀𝐀 can be 
chosen orthogonal to each 
other (even if there are some 
degenerate eigenvalues).  

⟹  

𝐀𝐀 has an orthonormal eigenbasis 
spanning the input space and is therefore 
unitarily diagonalizable: 
𝐀𝐀 = 𝐔𝐔𝐃𝐃𝐔𝐔−1 = 𝐔𝐔𝐃𝐃𝐔𝐔†  
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HERMITIAN MATRICES: 

Hermitian matrices inherit all the properties of normal matrices (copied below in shortened form), 
plus a new one; that all eigenvalues are real. 

 

Of course, symmetric real matrices (which are the real counterpart to Hermitian matrices) share all 
these properties, replacing 𝐀𝐀† = 𝐀𝐀T. 

Proof all eigenvalues of 𝐀𝐀 are real: Assume 𝐀𝐀𝐯𝐯 = 𝜆𝜆𝐯𝐯 for eigenvector 𝐯𝐯 and eigenvalue 𝜆𝜆. We can take 
Hermitian conjugate of both sides to obtain (𝐀𝐀𝐯𝐯)† = (𝜆𝜆𝐯𝐯)† → 𝐯𝐯†𝐀𝐀† = 𝜆𝜆∗𝐯𝐯†. Multiply on the right by 
𝐯𝐯 to get 𝐯𝐯†𝐀𝐀†𝐯𝐯 = 𝜆𝜆∗𝐯𝐯†𝐯𝐯, and since 𝐀𝐀† = 𝐀𝐀, we can say: 𝐯𝐯†𝐀𝐀†𝐯𝐯 = 𝐯𝐯†𝐀𝐀𝐯𝐯 = 𝜆𝜆𝐯𝐯†𝐯𝐯. Comparing both 
results, we find that 𝜆𝜆∗ = 𝜆𝜆. Therefore 𝜆𝜆 is real. 

Proof 𝐀𝐀 has 𝑁𝑁 orthonormal eigenvectors: Assuming different eigenvalues (the general proof is 
longer). We assume (a) 𝐀𝐀𝐯𝐯𝑖𝑖 = 𝜆𝜆𝑖𝑖𝐯𝐯𝑖𝑖 and (b) 𝐀𝐀𝐯𝐯𝑗𝑗 = 𝜆𝜆𝑗𝑗𝐯𝐯𝑗𝑗. Now we take Hermitian conjugate of the first 
eq. and multiply right by 𝐯𝐯𝑗𝑗 resulting in (a) 𝐯𝐯𝑖𝑖

†𝐀𝐀†𝐯𝐯𝑗𝑗 = 𝜆𝜆𝑖𝑖∗𝐯𝐯𝑖𝑖
†𝐯𝐯𝑗𝑗. Next, we multiply the second eq. on the 

left by 𝐯𝐯𝑖𝑖
† resulting in (b) 𝐯𝐯𝑖𝑖

†𝐀𝐀𝐯𝐯𝑗𝑗 = 𝜆𝜆𝑗𝑗𝐯𝐯𝑖𝑖
†𝐯𝐯𝑗𝑗. Subtracting (a) and (b) we obtain: 𝐯𝐯𝑖𝑖

†𝐀𝐀†𝐯𝐯𝑗𝑗 − 𝐯𝐯𝑖𝑖
†𝐀𝐀𝐯𝐯𝑗𝑗 = (𝜆𝜆𝑖𝑖∗ −

𝜆𝜆𝑗𝑗)𝐯𝐯𝑖𝑖
†𝐯𝐯𝑗𝑗 and since  𝐀𝐀† = 𝐀𝐀, the left hand side is zero, and 𝜆𝜆𝑖𝑖∗ = 𝜆𝜆𝑖𝑖 because all 𝜆𝜆 are real, so we have: 

�𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑗𝑗�𝐯𝐯𝑖𝑖
†𝐯𝐯𝑗𝑗 = �𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑗𝑗�〈𝐯𝐯𝑖𝑖 ,𝐯𝐯𝑗𝑗〉 = 𝟎𝟎. So, if 𝜆𝜆𝑖𝑖 ≠ 𝜆𝜆𝑗𝑗, then 〈𝐯𝐯𝑖𝑖 , 𝐯𝐯𝑗𝑗〉 = 𝟎𝟎 meaning they are orthogonal. 

 

UNITARY MATRICES: 

Unitary matrices inherit all the properties of normal matrices (copied below in shortened form), plus 
a new one; that all eigenvalues lie in the unit circle of the complex plane. 

 

Proof: We proved earlier that unitary matrices preserve the norms of the vectors they transform: 
‖𝐀𝐀𝐱𝐱‖ = ‖𝐱𝐱‖. Therefore, this must of course include the eigenvectors: ‖𝐀𝐀𝐯𝐯‖ = |𝜆𝜆|‖𝐯𝐯‖ = ‖𝐯𝐯‖. 

Of course, orthogonal real matrices (which are the real counterpart to unitary matrices) share all these 
properties, replacing 𝐀𝐀† = 𝐀𝐀T. 

  

  

𝐀𝐀 is 
Hermitian 
(𝐀𝐀† = 𝐀𝐀) 

                
����� 𝐀𝐀 is Normal 

(𝐀𝐀𝐀𝐀† = 𝐀𝐀†𝐀𝐀)                 
����� 𝐀𝐀 has 𝑁𝑁 orthonormal eigenvectors 

                
����� All eigenvalues of 𝐀𝐀 are real 

In summary, Hermitian matrices have the “nicest” possible eigenvalues and eigenvectors: 
purely real eigenvalues and a complete basis of 𝑁𝑁 orthonormal eigenvectors which spans the 
input space. 

𝐀𝐀 is Unitary 
(𝐀𝐀† = 𝐀𝐀−1) 

                
����� 𝐀𝐀 is Normal 

(𝐀𝐀𝐀𝐀† = 𝐀𝐀†𝐀𝐀)                 
����� 𝐀𝐀 has 𝑁𝑁 orthonormal eigenvectors 

                
����� All eigenvalues of 𝐀𝐀 have unit modulus |𝜆𝜆𝑘𝑘| = 1      (i.e. 𝜆𝜆𝑘𝑘 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑘𝑘) 
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27) Find the eigenvalues and eigenvectors of the following matrix: 

𝐀𝐀 = �
0 𝑖𝑖 𝑖𝑖
−𝑖𝑖 1 0
−𝑖𝑖 0 1

� 

First notice that the matrix is Hermitian, so even though it is a complex matrix, we know it will have 
3 real eigenvalues and 3 orthogonal eigenvectors. First solve the characteristic polynomial 
det(𝐀𝐀− 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

�
0 − 𝜆𝜆 𝑖𝑖 𝑖𝑖
−𝑖𝑖 1 − 𝜆𝜆 0
−𝑖𝑖 0 1 − 𝜆𝜆

� = �(−𝜆𝜆)(1− 𝜆𝜆)(1− 𝜆𝜆) + 0 + 0 − 0 − (1 − 𝜆𝜆) − (1 − 𝜆𝜆)� = 0 

−𝜆𝜆 + 2𝜆𝜆2 − 𝜆𝜆3 − 2 + 2𝜆𝜆 = −𝜆𝜆3 + 2𝜆𝜆2 + 𝜆𝜆 − 2 = 0 

By trial and error we can easily see that 𝜆𝜆 = 1 is a solution, as well as 𝜆𝜆 = −1. With that information 
we can factorize the characteristic polynomial completely and find the three eigenvalues: 

(1 − 𝜆𝜆)(−1− 𝜆𝜆)(2− 𝜆𝜆) = 0 

Calculate eigenvectors for 𝜆𝜆1 = 1. For this we solve the equation (𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = 0. Let’s do Gauss 
elimination on the augmented matrix: 

�
−1 𝑖𝑖 𝑖𝑖
−𝑖𝑖 0 0
−𝑖𝑖 0 0

  �  
0
0
0
�
𝑅𝑅2−𝑖𝑖𝑅𝑅1→𝑅𝑅2
𝑅𝑅3−𝑖𝑖𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

−1 𝑖𝑖 𝑖𝑖
0 1 1
0 1 1

  �  
0
0
0
� → �

−1 𝑖𝑖 𝑖𝑖
0 1 1
0 0 0

  �  
0
0
0
� 

We have one degree of freedom (the third column has no pivot). Therefore: 
3rd row: 𝑥𝑥3 = 𝛼𝛼.  2nd row: 𝑥𝑥2 = −𝛼𝛼.  1st row: 𝑥𝑥1 = 0. 

𝐱𝐱 = span{(0,1,−1)𝑇𝑇} → 𝐯𝐯1 = (0,1,−1)𝑇𝑇 or any multiple 

Calculate eigenvectors for 𝜆𝜆2 = −1. For this we solve the equation (𝐀𝐀 − 𝜆𝜆2𝐈𝐈)𝐱𝐱 = 0. Let’s do Gauss 
elimination on the augmented matrix: 

�
1 𝑖𝑖 𝑖𝑖
−𝑖𝑖 2 0
−𝑖𝑖 0 2

  �  
0
0
0
�
𝑅𝑅2+𝑖𝑖𝑅𝑅1→𝑅𝑅2
𝑅𝑅3+𝑖𝑖𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯� �

1 𝑖𝑖 𝑖𝑖
0 1 −1
0 −1 1

  �  
0
0
0
� → �

1 𝑖𝑖 𝑖𝑖
0 1 −1
0 0 0

  �  
0
0
0
� 

We have one degree of freedom (the third column has no pivot). Therefore: 
3rd row: 𝑥𝑥3 = 𝛼𝛼.  2nd row: 𝑥𝑥2 = 𝛼𝛼.  1st row: 𝑥𝑥1 = −2𝑖𝑖𝛼𝛼. 

𝐱𝐱 = span{(−2𝑖𝑖, 1,1)𝑇𝑇} → 𝐯𝐯2 = (−2𝑖𝑖, 1,1)𝑇𝑇 or any multiple 

Calculate eigenvectors for 𝜆𝜆3 = 2. For this we solve the equation (𝐀𝐀 − 𝜆𝜆3𝐈𝐈)𝐱𝐱 = 0. Let’s do Gauss 
elimination on the augmented matrix: 

�
−2 𝑖𝑖 𝑖𝑖
−𝑖𝑖 −1 0
−𝑖𝑖 0 −1

  �  
0
0
0
�
𝑅𝑅2−(𝑖𝑖/2) 𝑅𝑅1→𝑅𝑅2
𝑅𝑅3−(𝑖𝑖/2)𝑅𝑅1→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� �

−2 𝑖𝑖 𝑖𝑖
0 −1/2 1/2
0 1/2 −1/2

  �  
0
0
0
� → �

−2 𝑖𝑖 𝑖𝑖
0 −1 1
0 0 0

  �  
0
0
0
� 

We have one degree of freedom (the third column has no pivot). Therefore: 
3rd row: 𝑥𝑥3 = 𝛼𝛼.  2nd row: 𝑥𝑥2 = 𝛼𝛼.  1st row: 𝑥𝑥1 = (1/2)(𝑥𝑥2𝑖𝑖 + 𝑥𝑥3𝑖𝑖) = 𝑖𝑖. 

𝐱𝐱 = span{(𝑖𝑖, 1,1)𝑇𝑇} → 𝐯𝐯3 = (𝑖𝑖, 1,1)𝑇𝑇 or any multiple 

Which are indeed three orthogonal vectors 
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28) Calculate the 100-th power 𝐀𝐀100 of the matrix: 

𝐀𝐀 = �
0 𝑖𝑖 0
−𝑖𝑖 1 𝑖𝑖
0 −𝑖𝑖 0

�  

In order to calculate such a high power, the only practical method is to diagonalize the matrix: 

𝐀𝐀 = 𝐒𝐒𝐃𝐃𝐒𝐒−1 

Such that: 

𝐀𝐀𝑛𝑛 = 𝐒𝐒𝐃𝐃𝑛𝑛𝐒𝐒−1 

where 𝐃𝐃 is a diagonal matrix containing the eigenvalues, whose 𝑛𝑛-th power is trivial to calculate: 

𝐃𝐃 = �
𝜆𝜆1 0 0
0 𝜆𝜆2 0
0 0 𝜆𝜆3

�  →  𝐃𝐃𝑛𝑛 = �
𝜆𝜆1𝑛𝑛 0 0
0 𝜆𝜆2𝑛𝑛 0
0 0 𝜆𝜆3𝑛𝑛

�   

and where 𝐒𝐒 is a matrix containing the eigenvectors: 

𝐒𝐒 = �
| | |
𝐯𝐯1 𝐯𝐯2 𝐯𝐯3
| | |

� 

Therefore, our first task is to calculate the eigenvalues and eigenvectors of the matrix. 

For this, first notice that the matrix is Hermitian, so even though it is a complex matrix, we know it 
will have 3 real eigenvalues and 3 orthogonal eigenvectors.  

Therefore, the eigenvectors form an orthonormal eigenbasis {𝐯𝐯�1,𝐯𝐯�2, 𝐯𝐯�3} which means that the matrix 
𝐒𝐒 must be a unitary matrix, which in turn means that calculating the inverse becomes trivial: 

𝐒𝐒 = �
| | |
𝐯𝐯�1 𝐯𝐯�2 𝐯𝐯�3
| | |

� with {𝐯𝐯�1,𝐯𝐯�2,𝐯𝐯�3} orthonormal basis ⟺ 𝐒𝐒 is a unitary matrix ⟺  𝐒𝐒−1 = 𝐒𝐒† 

𝐒𝐒−1 = �
− 𝐯𝐯�1∗ −
− 𝐯𝐯�2∗ −
− 𝐯𝐯�3∗ −

� 

Knowing all this, let’s start by finding the eigenvalues and eigenvectors of 𝐀𝐀. 

Calculating the determinant and trace of the matrix 𝐀𝐀 is quick: det𝐀𝐀 = 0 + 0 + 0 − 0 − 0 − 0 = 0 
using the diagonals method, and tr 𝐀𝐀 = 1 by adding the elements of the diagonal. This quick 
calculation can help us finding the eigenvalues, since now we know that det𝐀𝐀 = 𝜆𝜆1𝜆𝜆2𝜆𝜆3 = 0 and 
tr 𝐀𝐀 = λ1 + λ2 + λ3 = 1. From this we can deduce that 𝜆𝜆1 = 0 and 𝜆𝜆2 = 1 − 𝜆𝜆3. 

 Now, solve the characteristic polynomial det(𝐀𝐀 − 𝜆𝜆𝐈𝐈) = 0 to find eigenvalues: 

�
0 − 𝜆𝜆 𝑖𝑖 0
−𝑖𝑖 1 − 𝜆𝜆 𝑖𝑖
0 −𝑖𝑖 0 − 𝜆𝜆

� = �(−𝜆𝜆)(1− 𝜆𝜆)(−𝜆𝜆) + 0 + 0 − 0 − (𝑖𝑖)(−𝑖𝑖)(−𝜆𝜆)− (−𝜆𝜆)(𝑖𝑖)(−𝑖𝑖)� = 0 

𝜆𝜆2 − 𝜆𝜆3 + 𝜆𝜆 + 𝜆𝜆 = 0 
−𝜆𝜆3 + 𝜆𝜆2 + 2𝜆𝜆 = 0 
−𝜆𝜆(𝜆𝜆2 − 𝜆𝜆 − 2) = 0 
−𝜆𝜆(𝜆𝜆 + 1)(𝜆𝜆 − 1) = 0 
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Therefore, the three roots are the three eigenvalues: 𝜆𝜆1 = 0, 𝜆𝜆2 = −1 and 𝜆𝜆3 = 2. Quick check, this 
matches the expected det𝐀𝐀 = 𝜆𝜆1𝜆𝜆2𝜆𝜆3 = 0 and tr 𝐀𝐀 = λ1 + λ2 + λ3 = 1. Also, since 𝐀𝐀 was Hermitian 
we know that its eigenvalues are all real. 

Calculate eigenvectors for 𝜆𝜆1 = 0. For this we solve the equation (𝐀𝐀 − 𝜆𝜆1𝐈𝐈)𝐱𝐱 = 0. Let’s do Gauss 
elimination on the augmented matrix: 

�
0 𝑖𝑖 0
−𝑖𝑖 1 𝑖𝑖
0 −𝑖𝑖 0

  �  
0
0
0
�
𝑅𝑅3+𝑅𝑅1→𝑅𝑅3
𝑅𝑅2↔𝑅𝑅1�⎯⎯⎯⎯⎯⎯� �

−𝑖𝑖 1 𝑖𝑖
0 𝑖𝑖 0
0 0 0

  �  
0
0
0
� 

We have one degree of freedom (the third column has no pivot). Therefore: 
3rd row: 𝑥𝑥3 = 𝛼𝛼.  2nd row: 𝑖𝑖𝑥𝑥2 = 0 → 𝑥𝑥2 = 0.  1st row: −𝑖𝑖𝑥𝑥1 + 𝑖𝑖𝛼𝛼 = 0 → 𝑥𝑥1 = 𝛼𝛼. 

𝐱𝐱 = 𝛼𝛼(1,0,1)𝑇𝑇 = span{(1,0,1)𝑇𝑇} → 𝐯𝐯1 = (1,0,1)𝑇𝑇 or any multiple 

Calculate eigenvectors for 𝜆𝜆2 = −1. For this we solve the equation (𝐀𝐀 − 𝜆𝜆2𝐈𝐈)𝐱𝐱 = 0 (we must subtract 
−1, i.e. add 1, to the main diagonal). Let’s do Gauss elimination on the augmented matrix: 

�
1 𝑖𝑖 0
−𝑖𝑖 2 𝑖𝑖
0 −𝑖𝑖 1

  �  
0
0
0
�
𝑅𝑅2+(−𝑖𝑖)𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯⎯⎯� �

1 𝑖𝑖 0
0 1 𝑖𝑖
0 −𝑖𝑖 1

  �  
0
0
0
�
𝑅𝑅3+(𝑖𝑖)𝑅𝑅2→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯⎯��

1 𝑖𝑖 0
0 1 𝑖𝑖
0 0 0

  �  
0
0
0
� 

We have one degree of freedom (the third column has no pivot). Therefore: 
3rd row: 𝑥𝑥3 = 𝛼𝛼.  2nd row: 𝑥𝑥2 + 𝑖𝑖𝛼𝛼 = 0 → 𝑥𝑥2 = −𝑖𝑖𝛼𝛼.  1st row: 𝑥𝑥1 + 𝑖𝑖𝑥𝑥2 = 0 → 𝑥𝑥1 = −𝑖𝑖𝑥𝑥2 = −𝛼𝛼. 

𝐱𝐱 = 𝛼𝛼(−1,−𝑖𝑖, 1)T = span{(−1,−𝑖𝑖, 1)T} → 𝐯𝐯2 = (−1,−𝑖𝑖, 1)T or any multiple 

Calculate eigenvectors for 𝜆𝜆3 = 2. For this we solve the equation (𝐀𝐀 − 𝜆𝜆3𝐈𝐈)𝐱𝐱 = 0. Let’s do Gauss 
elimination on the augmented matrix: 

�
−2 𝑖𝑖 0
−𝑖𝑖 −1 𝑖𝑖
0 −𝑖𝑖 −2

  �  
0
0
0
�
𝑅𝑅2+(−𝑖𝑖/2) 𝑅𝑅1→𝑅𝑅2�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� �

−2 𝑖𝑖 0
0 −1/2 𝑖𝑖
0 −𝑖𝑖 −2

 �  
0
0
0
�
𝑅𝑅3+(−2𝑖𝑖)𝑅𝑅2→𝑅𝑅3�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯� �

−2 𝑖𝑖 0
0 −1/2 𝑖𝑖
0 0 0

�  
0
0
0
� 

We have one degree of freedom (the third column has no pivot). Therefore: 
3rd row: 𝑥𝑥3 = 𝛼𝛼.  2nd row: 𝑥𝑥2 = 2𝑖𝑖𝑥𝑥3 = 2𝑖𝑖𝛼𝛼.  1st row: 2𝑥𝑥1 = 𝑖𝑖𝑥𝑥2 → 𝑥𝑥1 = −𝛼𝛼. 

𝐱𝐱 = 𝛼𝛼(−1,2𝑖𝑖, 1)T = span{(−1,2𝑖𝑖, 1)𝑇𝑇} → 𝐯𝐯3 = (−1,2𝑖𝑖, 1)𝑇𝑇 or any multiple 

Which are indeed three orthogonal vectors: 

〈𝐯𝐯1,𝐯𝐯2〉 = (1)(−1)∗ + 0 + (1)(1)∗ = 0 
〈𝐯𝐯1,𝐯𝐯3〉 = (1)(−1)∗ + 0 + (1)(1)∗ = 0 
〈𝐯𝐯2, 𝐯𝐯3〉 = (−1)(−1)∗ + (−𝑖𝑖)(2𝑖𝑖)∗ + (1)(1)∗ = 1 − 2 + 1 = 0 

We would like to have an orthonormal eigenbasis. For that, we can simply normalize each eigenvector 
by its norm so that they all become unit vectors: 

𝐯𝐯�1 =
1
√2

�
1
0
1
� ,          𝐯𝐯�2 =

1
√3

�
−1
−𝑖𝑖
1
� , 𝐯𝐯�3 =

1
√6

�
−1
2𝑖𝑖
1
� 

Therefore, we can now construct the unitary change of basis matrix: 

𝐒𝐒 = �
| | |
𝐯𝐯�1 𝐯𝐯�2 𝐯𝐯�3
| | |

� =
1
√6

�
√3 −√2 −1
0 −𝑖𝑖√2 2𝑖𝑖
√3 √2 1

� 
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And we know its inverse must be equal to its Hermitian conjugate (since 𝐒𝐒 is unitary): 

𝐒𝐒−1 = 𝐒𝐒† = �
− 𝐯𝐯�1∗ −
− 𝐯𝐯�2∗ −
− 𝐯𝐯�3∗ −

� =
1
√6

�
√3 0 √3
−√2 𝑖𝑖√2 √2
−1 −2𝑖𝑖 1

� 

The diagonal matrix 𝐃𝐃 simply contains the eigenvalues (please note, the ordering of eigenvalues is 
arbitrary, however, we must be consistent: the first element in the diagonal must be the eigenvalue 
for the first column vector in matrix 𝐒𝐒, and so on…) 

𝐃𝐃 = �
0 0 0
0 −1 0
0 0 2

� 

At this point, we can check, doing matrix multiplication, that, indeed: 

𝐀𝐀 = 𝐒𝐒𝐃𝐃𝐒𝐒−1 

�
0 𝑖𝑖 0
−𝑖𝑖 1 𝑖𝑖
0 −𝑖𝑖 0

� =
1
√6

�
√3 −√2 −1
0 −𝑖𝑖√2 2𝑖𝑖
√3 √2 1

��
0 0 0
0 −1 0
0 0 2

�
1
√6

�
√3 0 √3
−√2 𝑖𝑖√2 √2
−1 −2𝑖𝑖 1

� 

 

So we have successfully diagonalized the matrix! Now it’s very easy to calculate its 100-th power: 

𝐀𝐀100 = (𝐒𝐒𝐃𝐃𝐒𝐒−1)(𝐒𝐒𝐃𝐃𝐒𝐒−1)(𝐒𝐒𝐃𝐃𝐒𝐒−1)⋯ (𝐒𝐒𝐃𝐃𝐒𝐒−1) = 𝐒𝐒𝐃𝐃100𝐒𝐒−1 

𝐀𝐀100 =
1
6
�
√3 −√2 −1
0 −𝑖𝑖√2 2𝑖𝑖
√3 √2 1

��
0 0 0
0 (−1)100 0
0 0 2100

��
√3 0 √3
−√2 𝑖𝑖√2 √2
−1 −2𝑖𝑖 1

� 

Knowing that (−1)100 = 1, we now do matrix multiplication: 

𝐀𝐀100 =
1
6
�
√3 −√2 −1
0 −𝑖𝑖√2 2𝑖𝑖
√3 √2 1

��
0 0 0

−√2 𝑖𝑖√2 √2
−2100 −2101𝑖𝑖 2100

�

=
1
6
�

2 + 2100 −2𝑖𝑖 + 2101𝑖𝑖 −2 − 2100
2𝑖𝑖 − 2101𝑖𝑖 2 + 2102 −2𝑖𝑖 + 2101𝑖𝑖
−2− 2100 2𝑖𝑖 − 2101𝑖𝑖 2 + 2100

� 

which is the requested answer. 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

2.5 (37) 

F. SIMULTANEOUS EIGENVECTORS AND COMMUTATION OF MATRICES 

Theorem:  

 

Proof. If we can construct the shared change-of-basis matrix 𝐕𝐕 which diagonalizes both 𝐀𝐀 and 𝐀𝐀: 𝐃𝐃𝐴𝐴 =
𝐕𝐕−1𝐀𝐀𝐕𝐕 and  𝐃𝐃𝐵𝐵 = 𝐕𝐕−1𝐀𝐀𝐕𝐕 (definition of “simultaneously diagonalizable”). Then the product of the 
diagonalized versions obviously commutes (as they are diagonal) and therefore so do 𝐀𝐀 and 𝐀𝐀. 

𝐀𝐀𝐀𝐀 = (𝐕𝐕𝐃𝐃A𝐕𝐕−1)(𝐕𝐕𝐃𝐃B𝐕𝐕−1) = 𝐕𝐕𝐃𝐃A𝐃𝐃B𝐕𝐕−1 = 𝐕𝐕𝐃𝐃B𝐃𝐃A𝐕𝐕−1 = (𝐕𝐕𝐃𝐃B𝐕𝐕−1)(𝐕𝐕𝐃𝐃A𝐕𝐕−1) = 𝐀𝐀𝐀𝐀 

This makes intuitive sense, because if the linear transformations commute, they do so regardless of 
the basis. 

And we can make the theorem work both ways if we assume that matrices are normal matrices: 

 

Let’s prove this only in the simpler case when both 𝐀𝐀 and 𝐀𝐀 have 𝑁𝑁 different eigenvalues*: 

The first relation is simple: if they have the same eigenbasis, they can both be diagonalized with it. 

The second relation: The proof in one direction was done above. We now need to prove the other 
direction: 

Assumptions are that 𝐀𝐀𝐀𝐀 = 𝐀𝐀𝐀𝐀 and that 𝐀𝐀 and 𝐀𝐀  have 𝑁𝑁 different eigenvectors 𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖 = 𝜆𝜆𝑖𝑖𝐯𝐯𝐴𝐴𝑖𝑖 and 
𝐀𝐀𝐯𝐯𝐵𝐵𝑖𝑖 = 𝜇𝜇𝑖𝑖𝐯𝐯𝐵𝐵𝑖𝑖. 

Our task is to prove that they must have the same eigenvectors 𝐯𝐯𝐴𝐴𝑖𝑖 = 𝐯𝐯𝐵𝐵𝑖𝑖 even though they might 
have different eigenvalues. Take the product 𝐀𝐀𝐀𝐀 and multiply by the right with 𝐯𝐯𝐴𝐴𝑖𝑖 , since the two 
matrices commute: 

𝐀𝐀𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖 = 𝐀𝐀𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖 = 𝐀𝐀𝜆𝜆𝑖𝑖𝐯𝐯𝐴𝐴𝑖𝑖 = 𝜆𝜆𝑖𝑖𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖 

Therefore, equating the first and last of these: 𝐀𝐀(𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖) = 𝜆𝜆𝑖𝑖(𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖), which means that 𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖 is an 
eigenvector of 𝐀𝐀 associated to eigenvalue 𝜆𝜆𝑖𝑖, just as 𝐯𝐯𝐴𝐴𝑖𝑖 was. But eigenvector solutions associated to 
the same single 𝜆𝜆𝑖𝑖 are unique to within a scale factor, therefore it must be true that 𝐀𝐀𝐯𝐯𝐴𝐴𝑖𝑖 = 𝜇𝜇𝑖𝑖𝐯𝐯𝐴𝐴𝑖𝑖, 
which means that 𝐯𝐯𝐴𝐴𝑖𝑖 is an eigenvector of 𝐀𝐀 so 𝐯𝐯𝐴𝐴𝑖𝑖 = 𝐯𝐯𝐵𝐵𝑖𝑖. 

*the proof can be generalised to the condition that there are some degenerate eigenvalues, but being 
normal still have 𝑁𝑁 independent eigenvectors. As long as by taking a linear combination of these 
vectors, one set of joint eigenvectors can be found between 𝐀𝐀 and 𝐀𝐀. 

This theorem is fundamental to the foundations of quantum mechanics and the uncertainty 
principle. 

Intuitively, the two transformations are simply scaling the vector space along the same directions, so 
we can simply scale each direction individually and the order is not important (i.e. diagonal matrices).  

Matrices 𝐀𝐀 and 𝐀𝐀 are simultaneously diagonalizable 
(i.e. can be diagonalized in the same basis)                  

����� Matrices 𝐀𝐀 and 𝐀𝐀 commute 
𝐀𝐀𝐀𝐀 = 𝐀𝐀𝐀𝐀 

 

If both matrices 𝐀𝐀 and 𝐀𝐀 are normal matrices (includes Hermitian and unitary ones), then: 

𝐀𝐀 and 𝐀𝐀 have the same 
eigenvectors 

⟺ 𝐀𝐀 and 𝐀𝐀 are simultaneously 
diagonalizable 

⟺ Matrices 𝐀𝐀 and 𝐀𝐀 commute  
𝐀𝐀𝐀𝐀 = 𝐀𝐀𝐀𝐀 
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G. APPLICATIONS OF EIGENVECTORS IN PHYSICS 

 

The notion of eigenvectors and eigenvalues is of huge importance in many areas of physics. Quantum 
mechanics is almost entirely based on it. 

We include here a simple example. You can find more examples in Prof. Lev Kantorovich’s 5CCP2255 
Notes (page 39). 

  

29) 3D motion of a particle in an electromagnetic field: find the trajectory of the particle as a 
function of time 𝐫𝐫(𝑡𝑡) and its velocity 𝐯𝐯(𝑡𝑡), given initial conditions 𝐫𝐫(0) and 𝐯𝐯(0). 

 

Consider a particle of charge 𝑞𝑞 and mass 𝑚𝑚 in a constant magnetic field 𝐀𝐀. The equation of motion, 
given by combining Newton’s equation with the Lorentz force, is: 

𝑚𝑚
d𝐯𝐯
d𝑡𝑡

= 𝐅𝐅 = 𝑞𝑞(𝐯𝐯 × 𝐀𝐀) 

This, being a vector equation, can be written explicitly component by component, which can then be 
written as a matrix equation: 

�
𝑚𝑚𝑣𝑣1̇ = 𝑞𝑞(𝑣𝑣2𝐵𝐵3 − 𝑣𝑣3𝐵𝐵2)
𝑚𝑚𝑣𝑣2̇ = 𝑞𝑞(𝑣𝑣3𝐵𝐵1 − 𝑣𝑣1𝐵𝐵3)
𝑚𝑚𝑣𝑣3̇ = 𝑞𝑞(𝑣𝑣1𝐵𝐵2 − 𝑣𝑣2𝐵𝐵1)

    →        𝑚𝑚�
𝑣𝑣1̇
𝑣𝑣2̇
𝑣𝑣3̇
� = 𝑞𝑞 �

0 𝐵𝐵3 −𝐵𝐵2
−𝐵𝐵3 0 𝐵𝐵1
𝐵𝐵2 −𝐵𝐵1 0

��
𝑣𝑣1
𝑣𝑣2
𝑣𝑣3
� 

As a matrix equation, this is: 

d𝐯𝐯
d𝑡𝑡

= 𝐆𝐆𝐯𝐯 

with: 

𝐆𝐆 =
𝑞𝑞
𝑚𝑚
�

0 𝐵𝐵3 −𝐵𝐵2
−𝐵𝐵3 0 𝐵𝐵1
𝐵𝐵2 −𝐵𝐵1 0

� 

 

To solve this equation, we use the ansatz 𝐯𝐯 = 𝐮𝐮𝑒𝑒𝛼𝛼𝑡𝑡 where 𝐮𝐮 and 𝛼𝛼 are unknown. This converts the 

matrix equation into a known eigenvalue problem d
d𝑡𝑡

(𝐮𝐮𝑒𝑒𝛼𝛼𝑡𝑡) = 𝐆𝐆𝐮𝐮𝑒𝑒𝛼𝛼𝑡𝑡 →  𝛼𝛼𝐮𝐮𝑒𝑒𝛼𝛼𝑡𝑡 = 𝐆𝐆𝐮𝐮𝑒𝑒𝛼𝛼𝑡𝑡 

 𝛼𝛼𝐮𝐮 = 𝐆𝐆𝐮𝐮 

Therefore, we simply need to find eigenvalues 𝛼𝛼𝑖𝑖 and eigenvectors 𝐮𝐮𝑖𝑖  as possible solutions. The 
general solution is a linear combination: 

𝐯𝐯(t) = 𝑐𝑐1𝐮𝐮1𝑒𝑒𝛼𝛼1𝑡𝑡 + 𝑐𝑐2𝐮𝐮2𝑒𝑒𝛼𝛼2𝑡𝑡 + 𝑐𝑐3𝐮𝐮3𝑒𝑒𝛼𝛼3𝑡𝑡 

The undefined constants can be obtained from the initial conditions. 
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For example, let’s solve a simple case: assume 𝐀𝐀 = 𝐵𝐵𝐳𝐳� . The matrix 𝐆𝐆 becomes:  

𝐆𝐆 =
𝑞𝑞
𝑚𝑚
�

0 𝐵𝐵 0
−𝐵𝐵 0 0
0 0 0

� = �
0 𝜔𝜔 0
−𝜔𝜔 0 0

0 0 0
� 

Whose characteristic polynomial is: 

det(𝐆𝐆 − 𝜆𝜆𝐈𝐈) = �
−𝜆𝜆 𝜔𝜔 0
−𝜔𝜔 −𝜆𝜆 0

0 0 −𝜆𝜆
� = −𝜆𝜆(𝜆𝜆2 + 𝜔𝜔2) = −𝜆𝜆(𝜆𝜆 − 𝑖𝑖𝜔𝜔)(𝜆𝜆 + 𝑖𝑖𝜔𝜔) = 0 

The eigenvalues are: 𝜆𝜆 = 0, 𝑖𝑖𝜔𝜔,−𝑖𝑖𝜔𝜔. 

The eigenvectors are (normalizing them to be unit vectors for ease of use): 𝐮𝐮1 = (0,0,1)𝑇𝑇 ,𝐮𝐮2 =
1
√2

(1, 𝑖𝑖, 0)𝑇𝑇 and 𝐮𝐮3 = 1
√2

(1,−𝑖𝑖, 0)𝑇𝑇. Therefore, the general solution to the equation of motion is: 

𝐯𝐯(𝑡𝑡) = 𝑐𝑐1 �
0
0
1
� +

𝑐𝑐2
√2

�
1
𝑖𝑖
0
�𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡 +

𝑐𝑐3
√2

�−
1
𝑖𝑖
0
�𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡 

Complex velocities? Don’t worry, the last two terms will combine to form sines and cosines once we 
find the values of 𝑐𝑐2 and 𝑐𝑐3 from the initial conditions. For example, let’s use a general initial velocity 
𝐯𝐯(0) = (0, 𝑣𝑣⊥, 𝑣𝑣∥): 

𝐯𝐯(𝑡𝑡 = 0) = 𝑐𝑐1 �
0
0
1
� +

𝑐𝑐2
√2

�
1
𝑖𝑖
0
�𝑒𝑒0 +

𝑐𝑐3
√2

�−
1
𝑖𝑖
0
�𝑒𝑒0 = �

0
𝑣𝑣⊥
𝑣𝑣∥
� 

We find: 𝑐𝑐1 = 𝑣𝑣∥ and 𝑐𝑐2 = −𝑐𝑐3 = − 𝑖𝑖
√2
𝑣𝑣⊥. Substituting these into the equation of motion we get: 

𝐯𝐯(𝑡𝑡) = 𝑣𝑣∥ �
0
0
1
� −

𝑖𝑖𝑣𝑣⊥
2
�

1
𝑖𝑖
0
�𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡 +

𝑖𝑖𝑣𝑣⊥
2
�−

1
𝑖𝑖
0
�𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡 

𝐯𝐯(𝑡𝑡) =

⎝

⎜
⎛
𝑣𝑣⊥
2 �−𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡�
𝑣𝑣⊥
2 �𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑒𝑒−𝑖𝑖𝑖𝑖𝑡𝑡�

𝑣𝑣∥ ⎠

⎟
⎞

= �
𝑣𝑣⊥ sin𝜔𝜔𝑡𝑡
𝑣𝑣⊥ cos𝜔𝜔𝑡𝑡

𝑣𝑣∥
� 

Interestingly, notice that the kinetic energy of the particle 𝐾𝐾(𝑡𝑡) = 1
2
𝑚𝑚‖𝐯𝐯‖2 = constant, as it is well 

known that the magnetic field does not do any work on the particle. The particle trajectory can be 
obtained by integrating the velocity with respect to time: 

𝐫𝐫(𝑡𝑡) = � 𝐯𝐯(𝑡𝑡′)d𝑡𝑡′
𝑡𝑡

0
=

⎝

⎜
⎛
−
𝑣𝑣⊥
𝜔𝜔

cos𝜔𝜔𝑡𝑡 + 𝑟𝑟1
𝑣𝑣⊥
𝜔𝜔

sin𝜔𝜔𝑡𝑡 + 𝑟𝑟2
𝑣𝑣∥𝑡𝑡 + 𝑟𝑟3 ⎠

⎟
⎞

 

This corresponds to a helical trajectory! where 𝑟𝑟𝑖𝑖 are the integration constants that can be obtained 
from the initial position 𝐫𝐫(0). 
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3. FUNCTIONS OF HIGHER DIMENSIONS 

 

Most of your past study of mathematics has involved functions 𝑓𝑓(𝑥𝑥), where one variable is the input, 
and another single variable is the output: 𝑓𝑓:ℝ ↦ ℝ. 

In our study of matrices, we considered functions that had 𝑁𝑁 inputs and 𝑀𝑀 outputs. However, we 
limited our study to linear functions only. This is like studying only linear functions 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑥𝑥. 

In the next lessons, we finally go deep into the most general case: a general function that has 𝑁𝑁 inputs 
and 𝑀𝑀 outputs. These are the functions that really surround us in the real world: the various fields 
(e.g. gravitational, electromagnetic), the varying density of objects, the flow of matter, etc. We will 
learn calculus (derivation, integration, maximization, etc.) in the general higher dimensional case. 

 

 

Scalar field:  𝑇𝑇 = 𝑒𝑒−𝑥𝑥2+𝑦𝑦2(1 + sin 𝑥𝑥𝑥𝑥) 

 

Vector field:  𝐯𝐯 = (𝑥𝑥2 + 𝑥𝑥2 + 1)−5/2(𝑥𝑥 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�) 
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3.1 COORDINATE SYSTEMS: RECTANGULAR, POLAR, CYLINDRICAL, SPHERICAL 

A. RECTANGULAR COORDINATES 

When defining a field in space, the inputs of the function are called the coordinates; typically: 

 (𝑥𝑥,𝑥𝑥) or (𝑥𝑥,𝑥𝑥, 𝑧𝑧) 

These work great when we are working with straight/rectangular entities, but as soon as what we 
want to describe is curved, such as a circle, or radial, like the gravitational field of a point mass, the 
description becomes unnecessarily complicated and we resort to other systems of coordinates.  

 

B. POLAR COORDINATES (2D) 

In two dimensions, we can define points by using the radius 𝜌𝜌, and the azimuth 𝜙𝜙 

 

 

Conversion between (𝑥𝑥,𝑥𝑥) and (𝜌𝜌,𝜙𝜙) is identical to conversion of complex numbers 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑥𝑥 =
𝜌𝜌𝑒𝑒𝑖𝑖𝑖𝑖. As usual, be careful with tan−1(𝑥𝑥/𝑥𝑥) to consider the correct quadrants. Computers usually have 
a function of two arguments called atan2(𝑥𝑥, 𝑥𝑥). 

 

1) Problem: Sketch the following curves in polar coordinates: 

𝜌𝜌 = 1 
 

𝜌𝜌 = 1 +
1
5

sin(10𝜙𝜙) 

 

𝜌𝜌 = sin(𝜙𝜙) 
 

𝜌𝜌 = 𝜙𝜙 
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1

�𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙
𝑥𝑥 = 𝜌𝜌 sin𝜙𝜙                 �

𝜌𝜌 = �𝑥𝑥2 + 𝑥𝑥2

𝜙𝜙 = tan−1 �𝑦𝑦
𝑥𝑥
�
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C. CYLINDRICAL COORDINATES (3D) 

Suitable for cylindrically symmetric objects: cylinders, tubes, etc. Identical to polar coordinates but 
adding the z-coordinate. Note the angle 𝜙𝜙 is still defined parallel to the 𝑥𝑥𝑥𝑥 plane. 

 

 

D. SPHERICAL COORDINATES (3D) 

Suitable for spherically symmetric objects: spheres, onion-like structures, … 

  

 

� 
 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙
 𝑥𝑥 = 𝜌𝜌 sin𝜙𝜙
 𝑧𝑧 = 𝑧𝑧

          and     �
 𝜌𝜌 = �𝑥𝑥2 + 𝑥𝑥2         𝜌𝜌 ∈ [0,∞]
 𝜙𝜙 = tan−1(𝑥𝑥/𝑥𝑥)     𝜙𝜙 ∈ [0,2𝜋𝜋]
 𝑧𝑧 = 𝑧𝑧

 

 

�
 𝑥𝑥 = 𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙
 𝑥𝑥 = 𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙
 𝑧𝑧 = 𝑟𝑟 cos 𝜃𝜃

          and      

⎩
⎪
⎨

⎪
⎧

 

𝑟𝑟 = �𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2        𝑟𝑟 ∈ [0,∞]

𝜃𝜃 = tan−1 ��𝑥𝑥
2+𝑦𝑦2

𝑧𝑧
�       𝜃𝜃 ∈ [0,𝜋𝜋]

𝜙𝜙 = tan−1 �𝑦𝑦
𝑥𝑥
�                 𝜙𝜙 ∈ [0,2𝜋𝜋]
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2) Describe/sketch the curves defined by the following equations in cylindrical and spherical 
coordinates 

a) Cylindrical coordinates: 𝜌𝜌 = 1 ;  𝜙𝜙 = 2𝜋𝜋
𝑎𝑎
𝑧𝑧  with 𝑧𝑧 ∈ [0,∞] 

This describes a helix winded around a cylinder of radius 1. The pitch of the helix (height per turn) is 
equal to 𝑎𝑎, because 𝜙𝜙 completes a full revolution 0 to 2𝜋𝜋 when 𝑧𝑧 ∈ [0,𝑎𝑎]. 

 

 

b) Spherical coordinates: 𝑟𝑟 = 1;   𝜃𝜃 = 𝜋𝜋
4

;   𝜙𝜙 = 𝑡𝑡  with 𝑡𝑡 ∈ [0,2𝜋𝜋] 

This describes a circle similar to a circle of constant latitude on earth. It is a circle, parallel to the XY 
plane, whose centre is at 𝐜𝐜 = cos 𝜋𝜋

4
 𝐳𝐳� = 1

√2
 𝐳𝐳� and whose radius is equal to sin 𝜋𝜋

4
= 1

√2
. 

 

 

 

Notice that “1D curves” have a free parameter [e.g. 𝑧𝑧 ∈ [0,∞] in (a) and 𝑡𝑡 ∈ [0,2𝜋𝜋] in (b)]. If we 
have two free parameters, then we can describe surfaces. 
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3) Describe/sketch the surfaces defined by the following equations in cylindrical and spherical 
coordinates: 

a) Spherical coordinates: 𝜃𝜃 = 𝜋𝜋
4

;   𝜙𝜙 ∈ [0,2𝜋𝜋];   𝑟𝑟 ∈ [0,1] 

This describes the outer curved surface of an inverted cone with its tip at the origin, a tip angle of 
𝜋𝜋/2, and a height of 1 cos 𝜋𝜋

4
= 1/√2. 

 

 

 

b) Cylindrical coordinates: 𝜌𝜌 = 1;   𝜙𝜙 ∈ [0,𝜋𝜋];   𝑧𝑧 ∈ [0,1] 

This describes the outer curved surface of a cylinder of radius 1 and height 1 which is “cut in half”. 
i.e. keeping only the part in 𝑥𝑥 > 0. 
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E. UNIT VECTORS IN POLAR, CYLINDRICAL, SPHERICAL COORDINATES 

UNIT VECTORS FOR POLAR (2D) COORDINATES 

 

 

UNIT VECTORS FOR CYLINDRICAL (3D) COORDINATES 

 

Same as for polar, but with the z 
direction unit vector: 

 

 

UNIT VECTORS FOR SPHERICAL (3D) COORDINATES 

 

 

�
 𝐞𝐞�𝜌𝜌 = cos𝜙𝜙 𝐱𝐱� + sin𝜙𝜙 𝐲𝐲�
 𝐞𝐞�𝑖𝑖 = −sin𝜙𝜙 𝐱𝐱� + cos𝜙𝜙 𝐲𝐲�
 𝐞𝐞�𝑧𝑧 = 𝐳𝐳�

  

�
 𝐞𝐞�𝜌𝜌 = cos𝜙𝜙 𝐱𝐱� + sin𝜙𝜙 𝐲𝐲�
 𝐞𝐞�𝑖𝑖 = −sin𝜙𝜙 𝐱𝐱� + cos𝜙𝜙 𝐲𝐲�  

�
 𝐞𝐞�𝑟𝑟 = sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐲𝐲� + cos𝜃𝜃 𝐳𝐳�
 𝐞𝐞�𝜃𝜃 = cos 𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + cos𝜃𝜃 sin𝜙𝜙 𝐲𝐲� − sin𝜃𝜃 𝐳𝐳�
 𝐞𝐞�𝑖𝑖 = −sin𝜙𝜙 𝐱𝐱� + cos𝜙𝜙 𝐲𝐲�
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F. CHANGING COORDINATES OF A FIELD (INPUT) 

We use coordinates to define the input values for our “field”. A function 𝑓𝑓(𝑥𝑥,𝑥𝑥, 𝑧𝑧) can be written in 
any other coordinates by simply doing the corresponding change of variables in the function. For 
example, converting a 2D function from rectangular to polar coordinates: 

𝑓𝑓(𝑥𝑥,𝑥𝑥)   →    𝑓𝑓pol(𝜌𝜌,𝜙𝜙) = 𝑓𝑓(𝜌𝜌 cos𝜙𝜙 ,𝜌𝜌 sin𝜙𝜙) 

 

Example: Convert 𝑓𝑓(𝑥𝑥, 𝑥𝑥) = 𝑒𝑒−𝑥𝑥
2−𝑦𝑦2

�𝑥𝑥2+𝑦𝑦2
 from rectangular to polar coordinates: 

𝑓𝑓pol(𝜌𝜌,𝜙𝜙) = 𝑓𝑓(𝜌𝜌 cos𝜙𝜙 ,𝜌𝜌 sin𝜙𝜙) = 𝑒𝑒−𝜌𝜌
2 cos2 𝜙𝜙−𝜌𝜌2 sin2𝜙𝜙

�𝜌𝜌2 cos2 𝑖𝑖+𝜌𝜌2 sin2 𝑖𝑖
= 𝑒𝑒−𝜌𝜌

2(cos2 𝜙𝜙+sin2𝜙𝜙)

�𝜌𝜌2(cos2 𝑖𝑖+sin2 𝑖𝑖)
= 𝑒𝑒−𝜌𝜌

2

𝜌𝜌
. 

The two functions 𝑓𝑓pol and 𝑓𝑓 look different in terms of the operations they do on their input variables, 
but they represent the same scalar field. This reminds us of how the same linear transformation could 
be represented by different matrices. Normally we call them by the same name and use the input 
arguments as context to know which one we are referring to: 𝑓𝑓(𝑥𝑥,𝑥𝑥) or 𝑓𝑓(𝜌𝜌,𝜙𝜙).  

 

  

NOTE: Changing coordinates in NOT changing the BASIS of the input vector 

I would like to clarify that changing the coordinates of the input position vector cannot be described 
as changing the basis of the input vector, in the linear algebra sense. This might seem confusing but 
is very simple. It is true that we can write the input position vector in various coordinates: 

𝐫𝐫 = (𝑥𝑥,𝑥𝑥) = 𝑥𝑥 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�   in rectangular coordinates, 

𝐫𝐫 = 𝜌𝜌 cos𝜙𝜙 𝐱𝐱� + 𝜌𝜌 sin𝜙𝜙  𝐲𝐲�  in polar coordinates.  

However, in both cases we are using the 𝐱𝐱� and 𝐲𝐲� basis. We cannot interpret the input position vector 
(𝜌𝜌,𝜙𝜙) as a vector with a basis {𝐞𝐞�𝑟𝑟 , 𝐞𝐞�𝑖𝑖}  in the usual linear algebra sense: 

 𝐫𝐫 = (𝜌𝜌,𝜙𝜙) = 𝜌𝜌 𝐞𝐞�𝜌𝜌 + 𝜙𝜙 𝐞𝐞�𝑖𝑖.  [WRONG] 

This is wrong, the dimensions don’t even make sense! Why is this wrong? the basis vectors {𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} 
which represent unit vectors in the direction of 𝜌𝜌 and 𝜙𝜙, are not well defined! While {𝐱𝐱�, 𝐲𝐲�} are 
always constant, {𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} depend on the position. Therefore, they cannot be used as a basis to 
describe the position vector itself. For example, what would 𝐫𝐫 = 3𝐞𝐞�𝜌𝜌 mean? Which direction? 

However, the vectors {𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} can be defined IF the position 𝐫𝐫 is given, therefore the basis can be 
used to express the output vector. Because the output vector is given at every specific position. 
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G. CHANGING BASIS OF A VECTOR FIELD (OUTPUT VECTOR) 

Changing coordinates represents a change in the input of a field. However, we can also change the 
basis for the output vector (when the output is a vector in space, such as is the case in a vector field) 
into polar, cylindrical or spherical basis. 

The interpretation is that we have a vector field 𝐫𝐫 → 𝐅𝐅(𝐫𝐫) and for each position 𝐫𝐫, we can define a 
basis {𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} in which to expand the output vector 𝐅𝐅. Therefore, the output of the function, the vector 
𝐅𝐅(𝐫𝐫) can be expressed in {𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖}, or in {𝐱𝐱�, 𝐲𝐲�}. 

 

 

 

 

 

To change the output basis, we can simply substitute in the expressions for basis vectors in terms of 
the other basis, or we can use the techniques we know from linear algebra (the change of basis is a 
linear operation and can be done with a change-of-basis matrix). 

Example: Changing basis of the field from rectangular into polar coordinates 

First obtain the change of basis-matrix {𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} to {𝐱𝐱�, 𝐲𝐲�} 

Remember we use the vectors {𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} as the columns:  𝐀𝐀 = �
| |
𝐞𝐞�𝜌𝜌 𝐞𝐞�𝑖𝑖
| |

� = �cos𝜙𝜙 − sin𝜙𝜙
sin𝜙𝜙 cos𝜙𝜙 � 

Since the columns are orthonormal, this is an orthogonal matrix, and therefore 𝐀𝐀−1 = 𝐀𝐀T , so no 
need to calculate the inverse. Therefore: 

�
𝐹𝐹𝜌𝜌
𝐹𝐹𝑖𝑖
� = 𝐀𝐀−1 �

𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� = 𝐀𝐀T �

𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� = � cos𝜙𝜙 sin𝜙𝜙

−sin𝜙𝜙 cos𝜙𝜙� �
𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� = �

𝐹𝐹𝑥𝑥 cos𝜙𝜙 + 𝐹𝐹𝑦𝑦 sin𝜙𝜙
−𝐹𝐹𝑥𝑥 sin𝜙𝜙 + 𝐹𝐹𝑦𝑦 cos𝜙𝜙� 

Which gives us the components �
𝐹𝐹𝜌𝜌
𝐹𝐹𝑖𝑖
� in the new basis, as a function of the components �

𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
�. 

Remember that the vector components 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 are themselves functions of the position, which 
can be expressed in rectangular 𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑥𝑥(𝑥𝑥,𝑥𝑥) or polar 𝐹𝐹𝑥𝑥 = 𝐹𝐹𝑥𝑥(𝜌𝜌,𝜙𝜙) coordinates. The change of 
basis matrix does not care which. 

 

The same arguments can be applied to 3D fields, to convert into cylindrical or spherical coordinates 
and bases. 

Do not confuse transforming the coordinates (the input position vector 𝐫𝐫 of the function) with 
transforming the field basis (transforming the vector output field itself 𝐅𝐅(𝐫𝐫)). 
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Examples: 

To clarify the difference, consider how a given 2D vector field 𝐅𝐅(𝐫𝐫) can be written in rectangular or 
polar coordinates and, for each of those two cases, the vector 𝐅𝐅 can be expressed in rectangular or 
polar basis, having a total of 4 possible representations.  

 𝐅𝐅(𝐫𝐫) 
Coordinates [input] 

Rectangular coordinates (𝑥𝑥,𝑥𝑥) Polar coordinates (𝜌𝜌,𝜙𝜙) 

Basis 
[output] 

Rectangular 
{𝐱𝐱�, 𝐲𝐲�} 𝐅𝐅(𝑥𝑥,𝑥𝑥) = 𝑥𝑥 𝐱𝐱� − 𝑥𝑥 𝐲𝐲�   𝐅𝐅(𝜌𝜌,𝜙𝜙) = 𝜌𝜌 sin𝜙𝜙  𝐱𝐱� − 𝜌𝜌 cos𝜙𝜙  𝐲𝐲� 

Polar 
{𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} 𝐅𝐅(𝑥𝑥,𝑥𝑥) = −�𝑥𝑥2 + 𝑥𝑥2 𝐞𝐞�𝜃𝜃   𝐅𝐅(𝜌𝜌,𝜙𝜙) = −𝜌𝜌 𝐞𝐞�𝑖𝑖 

 
 
 

 𝐅𝐅(𝐫𝐫) 
Coordinates [input] 

Rectangular coordinates (𝑥𝑥,𝑥𝑥) Polar coordinates (𝜌𝜌,𝜙𝜙) 

Basis 
[output] 

Rectangular 
{𝐱𝐱�, 𝐲𝐲�} 𝐅𝐅(𝑥𝑥,𝑥𝑥) = (𝑥𝑥 − 𝑥𝑥) 𝐱𝐱� + (𝑥𝑥 + 𝑥𝑥) 𝐲𝐲�   𝐅𝐅(𝜌𝜌,𝜙𝜙) = 𝜌𝜌(cos𝜙𝜙 − sin𝜙𝜙) 𝐱𝐱� 

                +𝜌𝜌(cos𝜙𝜙 + sin𝜙𝜙)𝐲𝐲� 
Polar 

{𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} 
𝐅𝐅(𝑥𝑥,𝑥𝑥) = �𝑥𝑥2 + 𝑥𝑥2 𝐞𝐞�𝜌𝜌 +

�𝑥𝑥2 + 𝑥𝑥2 𝐞𝐞�𝑖𝑖     
𝐅𝐅(𝜌𝜌,𝜙𝜙) = 𝜌𝜌�𝐞𝐞�𝜌𝜌 + 𝐞𝐞�𝑖𝑖� 

 
 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

3.1 (10) 

𝐅𝐅(𝐫𝐫) 
Coordinates [input] 

Rectangular coordinates (𝑥𝑥,𝑥𝑥) Polar coordinates (𝜌𝜌,𝜙𝜙) 

Basis 
[output] 

Rectangular 
{𝐱𝐱�, 𝐲𝐲�} 𝐅𝐅(𝑥𝑥,𝑥𝑥) = 𝑥𝑥 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�   𝐅𝐅(𝜌𝜌,𝜙𝜙) = 𝜌𝜌 sin𝜙𝜙  𝐱𝐱� + 𝜌𝜌 cos𝜙𝜙  𝐲𝐲� 

Polar 
{𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} 

𝐅𝐅(𝑥𝑥,𝑥𝑥) =
2𝑥𝑥𝑥𝑥

�𝑥𝑥2 + 𝑥𝑥2
 𝐞𝐞�𝜌𝜌

+
𝑥𝑥2 − 𝑥𝑥2

�𝑥𝑥2 + 𝑥𝑥2
 𝐞𝐞�𝑖𝑖 

𝐅𝐅(𝜌𝜌,𝜙𝜙) = 𝜌𝜌 sin(2𝜙𝜙) 𝐞𝐞�𝜌𝜌
+ 𝜌𝜌 cos(2𝜙𝜙) 𝐞𝐞�𝑖𝑖 

 
 

𝐅𝐅(𝐫𝐫) 
Coordinates [input] 

Rectangular coordinates (𝑥𝑥,𝑥𝑥) Polar coordinates (𝜌𝜌,𝜙𝜙) 

Basis 
[output] 

Rectangular 
{𝐱𝐱�, 𝐲𝐲�} 

𝐅𝐅(𝑥𝑥,𝑥𝑥) = 𝑥𝑥2

�𝑥𝑥2+𝑦𝑦2
  𝐱𝐱� + 𝑥𝑥𝑦𝑦

�𝑥𝑥2+𝑦𝑦2
 𝐲𝐲�   𝐅𝐅(𝜌𝜌,𝜙𝜙) = 𝜌𝜌 cos2 𝜙𝜙  𝐱𝐱�

+ 𝜌𝜌 cos𝜙𝜙 sin𝜙𝜙  𝐲𝐲� 
Polar 

{𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} 𝐅𝐅(𝑥𝑥, 𝑥𝑥) = 𝑥𝑥 𝐞𝐞�𝜌𝜌 𝐅𝐅(𝜌𝜌,𝜙𝜙) = 𝜌𝜌 cos𝜙𝜙  𝐞𝐞�𝜌𝜌 
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PROBLEMS: 

4) Problems: Given any of the four versions of the fields in the examples above, calculate the 
other three versions (i.e. fill the table starting from only one element). 

 

𝐅𝐅(𝐫𝐫) 
Coordinates [input] 

Rectangular coordinates (𝑥𝑥,𝑥𝑥) Polar coordinates (𝜌𝜌,𝜙𝜙) 

Basis 
[output] 

Rectangular 
{𝐱𝐱�, 𝐲𝐲�} 𝐅𝐅(𝑥𝑥,𝑥𝑥) = 𝑥𝑥 𝐱𝐱� − 𝑥𝑥 𝐲𝐲�   (1) 

Polar 
{𝐞𝐞�𝜌𝜌, 𝐞𝐞�𝑖𝑖} (3) (2) 

 

1. Convert to polar coordinates (keeping rectangular basis) 

Simply substitute 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙 and 𝑥𝑥 = 𝜌𝜌 sin𝜙𝜙 

𝐅𝐅(𝑥𝑥,𝑥𝑥) → 𝐅𝐅(𝜌𝜌 cos𝜙𝜙 ,𝜌𝜌 sin𝜙𝜙) = 𝜌𝜌 sin𝜙𝜙  𝐱𝐱� − 𝜌𝜌 cos𝜙𝜙  𝐲𝐲� = 𝜌𝜌(sin𝜙𝜙 𝐱𝐱� − cos𝜙𝜙 𝐲𝐲�) 

2. Convert this form into polar basis by using a change of basis matrix: 

𝐀𝐀 = �
| |
𝐞𝐞�𝜌𝜌 𝐞𝐞�𝑖𝑖
| |

� = �cos𝜙𝜙 − sin𝜙𝜙
sin𝜙𝜙 cos𝜙𝜙 � 

�
𝐹𝐹𝜌𝜌
𝐹𝐹𝑖𝑖
� = 𝐀𝐀−1 �

𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� = 𝐀𝐀T �

𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� = � cos𝜙𝜙 sin𝜙𝜙

−sin𝜙𝜙 cos𝜙𝜙� �
𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� = �

𝐹𝐹𝑥𝑥 cos𝜙𝜙 + 𝐹𝐹𝑦𝑦 sin𝜙𝜙
−𝐹𝐹𝑥𝑥 sin𝜙𝜙 + 𝐹𝐹𝑦𝑦 cos𝜙𝜙� 

𝐹𝐹𝜌𝜌 = 𝐹𝐹𝑥𝑥 cos𝜙𝜙 + 𝐹𝐹𝑦𝑦 sin𝜙𝜙 = 𝜌𝜌 sin𝜙𝜙 cos𝜙𝜙 − 𝜌𝜌 cos𝜙𝜙 sin𝜙𝜙 = 0 
𝐹𝐹𝑖𝑖 = −𝐹𝐹𝑥𝑥 sin𝜙𝜙 + 𝐹𝐹𝑦𝑦 cos𝜙𝜙 = −𝜌𝜌 sin𝜙𝜙 sin𝜙𝜙 − 𝜌𝜌 cos𝜙𝜙 cos𝜙𝜙 = −𝜌𝜌(sin2 𝜙𝜙 + cos2 𝜙𝜙) = −𝜌𝜌 

So that: 𝐅𝐅(𝑟𝑟,𝜃𝜃) = 0𝐞𝐞�𝜌𝜌 − 𝜌𝜌𝐞𝐞�𝑖𝑖 

3. Convert the coordinates of (2) into rectangular coordinates 

Simply substitute 𝜌𝜌 = �𝑥𝑥2 + 𝑥𝑥2, so that: 

𝐅𝐅(𝑥𝑥,𝑥𝑥) = 0𝐞𝐞�𝜌𝜌 − �𝑥𝑥2 + 𝑥𝑥2 𝐞𝐞�𝑖𝑖 

Note, alternative path: We could have first changed the basis, i.e. go directly to (3), by using the 
change of basis matrix, but expressed in rectangular coordinates, that is: 

𝐀𝐀 = �cos𝜙𝜙 − sin𝜙𝜙
sin𝜙𝜙 cos𝜙𝜙 � =

1
�𝑥𝑥2 + 𝑥𝑥2

�
𝑥𝑥 −𝑥𝑥
𝑥𝑥 𝑥𝑥 � 

�
𝐹𝐹𝜌𝜌
𝐹𝐹𝑖𝑖
� = 𝐀𝐀−1 �

𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� = 𝐀𝐀T �

𝐹𝐹𝑥𝑥
𝐹𝐹𝑦𝑦
� =

1
�𝑥𝑥2 + 𝑥𝑥2

�
𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑦𝑦𝑥𝑥
−𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑦𝑦𝑥𝑥

� 

𝐹𝐹𝜌𝜌 =
1

�𝑥𝑥2 + 𝑥𝑥2
�𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑦𝑦𝑥𝑥� =

1
�𝑥𝑥2 + 𝑥𝑥2

(𝑥𝑥𝑥𝑥 − 𝑥𝑥𝑥𝑥) = 0 

𝐹𝐹𝑖𝑖 =
1

�𝑥𝑥2 + 𝑥𝑥2
�−𝐹𝐹𝑥𝑥𝑥𝑥 + 𝐹𝐹𝑦𝑦𝑥𝑥� =

1
�𝑥𝑥2 + 𝑥𝑥2

(−𝑥𝑥2 − 𝑥𝑥2) = −�𝑥𝑥2 + 𝑥𝑥2 

Try the rest of the examples for yourself 
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5) Problem: The gravitational field of a mass 𝑀𝑀 placed at the origin is given by 𝐠𝐠 = −𝐺𝐺𝐺𝐺
𝑟𝑟2
𝐞𝐞�𝑟𝑟 in 

spherical coordinates and spherical basis. Complete a table as above, including rectangular 
and spherical coordinates and basis. 

Solution:  

1. Rectangular coordinates but spherical basis: 

We just substitute the expression for the 𝑟𝑟 coordinate and arrive at: 

𝐠𝐠 = −
𝐺𝐺𝑀𝑀

𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2
𝐞𝐞�𝑟𝑟  

2. Rectangular basis but spherical coordinates: 

a) Changing basis using a matrix: 

The change-of-basis matrix for converting �𝐞𝐞�𝑟𝑟 , 𝐞𝐞�𝜃𝜃 , 𝐞𝐞�𝑖𝑖� into {𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�} is given by a matrix whose 
columns are the vectors �𝐞𝐞�𝑟𝑟 , 𝐞𝐞�𝜃𝜃 , 𝐞𝐞�𝑖𝑖� written themselves in  {𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�} basis. For this we can look-up 
the spherical basis vectors: 

�
 𝐞𝐞�𝑟𝑟 = sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐲𝐲� + cos𝜃𝜃 𝐳𝐳�
 𝐞𝐞�𝜃𝜃 = cos 𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + cos𝜃𝜃 sin𝜙𝜙 𝐲𝐲� − sin𝜃𝜃 𝐳𝐳�
 𝐞𝐞�𝑖𝑖 = −sin𝜙𝜙 𝐱𝐱� + cos𝜙𝜙 𝐲𝐲�

 

𝐀𝐀 = �
| | |
𝐞𝐞�𝑟𝑟 𝐞𝐞�𝜃𝜃 𝐞𝐞�𝑖𝑖
| | |

� = �
sin𝜃𝜃 cos𝜙𝜙 cos𝜃𝜃 cos𝜙𝜙 −sin𝜙𝜙
sin𝜃𝜃 sin𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙 cos𝜙𝜙

cos 𝜃𝜃 − sin𝜃𝜃 0
� 

Therefore, the vector: 

𝐠𝐠 = −𝐺𝐺𝐺𝐺
𝑟𝑟2
𝐞𝐞�𝑟𝑟 = −𝐺𝐺𝐺𝐺

𝑟𝑟2
�

1
0
0
� in basis �𝐞𝐞�𝑟𝑟 , 𝐞𝐞�𝜃𝜃 , 𝐞𝐞�𝑖𝑖� 

gets converted into: 

𝐠𝐠 = −𝐺𝐺𝐺𝐺
𝑟𝑟2
�

sin𝜃𝜃 cos𝜙𝜙 cos𝜃𝜃 cos𝜙𝜙 −sin𝜙𝜙
sin𝜃𝜃 sin𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙 cos𝜙𝜙

cos 𝜃𝜃 − sin𝜃𝜃 0
��

1
0
0
� = −𝐺𝐺𝐺𝐺

𝑟𝑟2
�

sin𝜃𝜃 cos𝜙𝜙
sin𝜃𝜃 sin𝜙𝜙

cos𝜃𝜃
� in basis {𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�} 

b) Changing basis by substituting in the vectors directly: 

Since we are given  𝐞𝐞�𝑟𝑟 in a list above, we can simply substitute it: 

𝐠𝐠 = −
𝐺𝐺𝑀𝑀
𝑟𝑟2

𝐞𝐞�𝑟𝑟 = −
𝐺𝐺𝑀𝑀
𝑟𝑟2

(sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐲𝐲� + cos 𝜃𝜃 𝐳𝐳�) 

this second method was of course much simpler, in this case. 

 

3. Rectangular basis and rectangular coordinates 

Once the basis is rectangular (from 2) we now change the coordinates. For this, we “simply” 
substitute the expressions for 𝑟𝑟,𝜃𝜃,𝜙𝜙: 
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𝐠𝐠(𝑟𝑟,𝜃𝜃,𝜙𝜙) → 𝐠𝐠(𝑟𝑟(𝑥𝑥,𝑥𝑥, 𝑧𝑧),𝜃𝜃(𝑥𝑥,𝑥𝑥, 𝑧𝑧),𝜙𝜙(𝑥𝑥,𝑥𝑥, 𝑧𝑧))

= 𝐠𝐠��𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2, tan−1 �
�𝑥𝑥2 + 𝑥𝑥2

𝑧𝑧
� , tan−1 �

𝑥𝑥
𝑥𝑥
�� 

This leads to a horrible expression. Fortunately, 𝑟𝑟 only appears as 𝑟𝑟2, which will remove the square 
root, and the angles only appear as their sines and cosines. The sines and cosines of inverse tangents 
can be simplified by drawing a suitable triangle: 

 

Therefore: 

𝐠𝐠 = −
𝐺𝐺𝑀𝑀
𝑟𝑟2

(sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐲𝐲� + cos𝜃𝜃 𝐳𝐳�) 

=  −
𝐺𝐺𝑀𝑀

𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2
�

�𝑥𝑥2 + 𝑥𝑥2

�𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2
𝑥𝑥

�𝑥𝑥2 + 𝑥𝑥2
𝐱𝐱� +

�𝑥𝑥2 + 𝑥𝑥2

�𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2
𝑥𝑥

�𝑥𝑥2 + 𝑥𝑥2
𝐲𝐲�

+
𝑧𝑧

�𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2
𝐳𝐳�� 

= −
𝐺𝐺𝑀𝑀

(𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2)3/2 (𝑥𝑥 𝐱𝐱� + 𝑥𝑥 𝐲𝐲� + 𝑧𝑧 𝐳𝐳�) 

which is in rectangular coordinates and basis. 

Note there is a fast way to arrive at this result. We can realise that 𝐞𝐞�𝑟𝑟 = 𝐫𝐫
‖𝐫𝐫‖

= 𝐫𝐫
𝑟𝑟
  

𝐠𝐠 = −
𝐺𝐺𝑀𝑀
𝑟𝑟2

𝐞𝐞�𝑟𝑟 = −
𝐺𝐺𝑀𝑀
𝑟𝑟2

𝐫𝐫
𝑟𝑟

= −
𝐺𝐺𝑀𝑀
𝑟𝑟3

𝐫𝐫  

and then substitute 𝐫𝐫 = 𝑥𝑥 𝐱𝐱� + 𝑥𝑥 𝐲𝐲� + 𝑧𝑧 𝐳𝐳� and 𝑟𝑟 = �𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2, to arrive directly at the answer! 
This convenient shortcut only works with spherically symmetric fields. 

So, we have all the required expressions to complete the table: 

 

Note that we are in three dimensions, so in this table we could include a third row and column, for 
cylindrical coordinates and basis. 

  

sin �tan−1 �
𝑂𝑂
𝐴𝐴
�� =

𝑂𝑂
√𝑂𝑂2 + 𝐴𝐴2

 

cos �tan−1 �
𝑂𝑂
𝐴𝐴
�� =

𝐴𝐴
√𝑂𝑂2 + 𝐴𝐴2

  
 

Gravitational field: 
𝐠𝐠(𝐫𝐫) 

Coordinates [input] 
Rectangular coordinates (𝑥𝑥,𝑥𝑥, 𝑧𝑧) Spherical coordinates (𝑟𝑟, 𝜃𝜃,𝜙𝜙) 

Basis 
[output] 

Rectangular 
{𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳�} −𝐺𝐺𝑀𝑀

𝑥𝑥 𝐱𝐱� + 𝑥𝑥 𝐲𝐲� + 𝑧𝑧 𝐳𝐳�
(𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2)3/2 

−
𝐺𝐺𝑀𝑀
𝑟𝑟2

(sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱�
+ sin𝜃𝜃 sin𝜙𝜙 𝐲𝐲�
+ cos 𝜃𝜃 𝐳𝐳�) 

Spherical 
�𝐞𝐞�𝑟𝑟 , 𝐞𝐞�𝜃𝜃 , 𝐞𝐞�𝑖𝑖� 

−
𝐺𝐺𝑀𝑀

𝑥𝑥2 + 𝑥𝑥2 + 𝑧𝑧2
𝐞𝐞�𝑟𝑟 −

𝐺𝐺𝑀𝑀
𝑟𝑟2

𝐞𝐞�𝑟𝑟 
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6) Sketch the following curve in polar coordinates 𝜌𝜌 = 4𝜋𝜋 − 2𝜙𝜙 for 𝜙𝜙 ∈ [0,2𝜋𝜋], and indicate the 
values of all intercepts with the 𝑥𝑥 and 𝑥𝑥 axes. 

 

By substituting some values: 𝜙𝜙 = [0, 𝜋𝜋
2

,𝜋𝜋, 3𝜋𝜋
2

, 2𝜋𝜋] results in 𝜌𝜌 = [4𝜋𝜋, 3𝜋𝜋, 2𝜋𝜋,𝜋𝜋, 0] 
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3.2 INTEGRATING AND DIFFERENTIATING VECTORS 

Your knowledge of calculus in the past has involved functions 𝑓𝑓(𝑥𝑥), with one input and one output 
output 𝑓𝑓:ℝ ↦ ℝ. We are going to learn how to work with functions which have 𝑁𝑁 variables (inputs) 
and have 𝑀𝑀 components (outputs), that is: 𝑓𝑓:ℝ𝑁𝑁 ↦ ℝ𝑀𝑀.  

We can look at two parts of this problem: (a) how to deal with multiple outputs, and (b) how to deal 
with multiple inputs. In fact, (a) is easy. So, let’s first get the trivial part out of the way: integration and 
differentiation of vectors. 

A. INTEGRATION OF VECTORS 

Consider functions with only one input but multiple outputs 𝑓𝑓:ℝ ↦ ℝ𝑀𝑀. This is equivalent to a vector 
which depends on one single variable.  

 

For example: the position of an object as a function of time; the wind velocity (3D vector) at a weather 
vane as a function of time; …  

So, how do we integrate a vector? 

𝐈𝐈 = � 𝐯𝐯(𝑡𝑡) d𝑡𝑡
𝑏𝑏

𝑎𝑎
 

The solution is simple and can be justified mathematically by applying the linearity of the integrals 
(when the basis vectors are constant): 

� 𝐯𝐯(𝑡𝑡) d𝑡𝑡
𝑏𝑏

𝑎𝑎
= � (𝑣𝑣1(𝑡𝑡)𝐞𝐞1 + ⋯𝑣𝑣𝑀𝑀(𝑡𝑡)𝐞𝐞𝑀𝑀 )d𝑡𝑡

𝑏𝑏

𝑎𝑎
= ��𝑣𝑣1(𝑡𝑡) d𝑡𝑡� 𝐞𝐞1 + ⋯+ ��𝑣𝑣𝑀𝑀(𝑡𝑡) d𝑡𝑡� 𝐞𝐞𝑀𝑀 

 

If you think about it, this vector function of a single variable 𝐯𝐯(𝑡𝑡) is equivalent to defining 𝑀𝑀 different 
functions, one for each component of the vector: 

 

So, indeed, the most natural solution is to integrate each component separately: 

𝐈𝐈 = ∫ 𝐯𝐯(𝑡𝑡) d𝑡𝑡𝑏𝑏
𝑎𝑎 = ∫ �

𝑣𝑣1(𝑡𝑡)
⋮

𝑣𝑣𝑀𝑀(𝑡𝑡)
�  d𝑡𝑡𝑏𝑏

𝑎𝑎 = �
∫𝑣𝑣1(𝑡𝑡) d𝑡𝑡

⋮
∫ 𝑣𝑣𝑀𝑀(𝑡𝑡) d𝑡𝑡

�  
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1) Problem: A charged straight metal rod (from 𝑥𝑥 = 0 to 𝑥𝑥 = 2) has a constant charge linear 
density of 𝜆𝜆 C/m and is placed in a region with an external electric field 𝐄𝐄(𝑥𝑥) = (1 − 𝑥𝑥)𝐱𝐱� +
𝑥𝑥2𝐲𝐲� + 2𝐳𝐳� V/m, shown below. Calculate the net electric force acting on the rod. 

 

Solution: We want to obtain the force, which is a vector, therefore this will clearly involve an integral 
of a vector. The integrand must be a differential of force 𝐝𝐝𝐝𝐝 so that the total force. 

𝐝𝐝 = �𝐝𝐝𝐝𝐝 

Always think about what you are doing. We need to find the differential of the force 𝐝𝐝𝐝𝐝, as a 
function of position. We expect several things from it: (1) The differential of the force 𝐝𝐝𝐝𝐝 must be a 
vector, so that its integral is a vector; (2) The differential of the force will hopefully be written in 
terms of d𝑥𝑥, so that we can integrate along 𝑥𝑥; (3) What is the meaning of the differential of the 
force? It must be the force acting on a differential length d𝑥𝑥 of the rod. (4) The force acting on a 
differential length d𝑥𝑥 is equivalent to the force acting on a differential charge d𝑞𝑞. 

 

The equation of the electric force is 𝐝𝐝 = 𝑞𝑞𝐄𝐄 therefore, for a differential charge d𝑞𝑞, the force will be 
d𝐝𝐝 = d𝑞𝑞 𝐄𝐄. The differential charge is the charge contained on a differential length d𝑥𝑥 of the rod, 
which by definition of the charge density is d𝑞𝑞 = 𝜆𝜆 d𝑥𝑥. 

Putting it all together: 𝑑𝑑𝐝𝐝(𝑥𝑥) = d𝑞𝑞 𝐄𝐄(𝑥𝑥) = 𝜆𝜆 d𝑥𝑥 𝐄𝐄(𝑥𝑥) = 𝜆𝜆[(1 − 𝑥𝑥)𝐱𝐱� + 𝑥𝑥2𝐲𝐲� + 2𝐳𝐳�]d𝑥𝑥. 

So we substitute this into our integral and solve it: 

𝐝𝐝 = �𝐝𝐝𝐝𝐝 = � 𝜆𝜆[(1 − 𝑥𝑥)𝐱𝐱� + 𝑥𝑥2𝐲𝐲� + 2𝐳𝐳�]d𝑥𝑥
2

0
= �

integrate
each component� = 0𝐱𝐱� +

8𝜆𝜆
3
𝐲𝐲� + 4𝜆𝜆𝐳𝐳� 
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2) Problem: A charged metal rod spans the line segment (0,0,0) to (2,0,0). The rod has a varying 
linear charge density of 𝜆𝜆(𝑥𝑥) = 𝜆𝜆0(1 + 𝑥𝑥2)3/2 C/m. Calculate the electric field created by the 
rod at the point 𝐫𝐫𝟎𝟎 = (0,0,1). 

Solution: As before, we can start by realising that we will have to integrate d𝐄𝐄 to calculate the total 
electric field 𝐄𝐄: 

𝐄𝐄 = � d𝐄𝐄 

And now think about what d𝐄𝐄 must be. It must be the electric field created at 𝑟𝑟0 by a differential of 
charge d𝑞𝑞 = 𝜆𝜆 d𝑥𝑥 along the rod. The electric field 𝐄𝐄 created at 𝐫𝐫0 by a charge 𝑞𝑞 is equal to 𝐄𝐄 =
𝐞𝐞�𝑟𝑟𝑘𝑘𝑞𝑞/|𝐫𝐫|2, where 𝐫𝐫 is the vector pointing from the location of 𝑞𝑞 to the location 𝐫𝐫0 where we are 
calculating the electric field, and 𝐞𝐞�𝑟𝑟 = 𝐫𝐫/|𝐫𝐫| is the unit vector in that same direction.  

Therefore, we can apply that equation for each d𝑞𝑞. 

 

Just remember that almost everything in this expression is a function of 𝑥𝑥: 

𝑑𝑑𝐄𝐄 = 𝑘𝑘
d𝑞𝑞(𝑥𝑥)

|𝐫𝐫(𝑥𝑥)|2 𝐞𝐞�𝑟𝑟
(𝑥𝑥) = 𝑘𝑘

d𝑥𝑥 𝜆𝜆(𝑥𝑥)
|𝐫𝐫(𝑥𝑥)|2 𝐞𝐞�𝑟𝑟

(𝑥𝑥) 

Also note that we can simplify: 

1
|𝐫𝐫|2 𝐞𝐞�𝑟𝑟 =

1
|𝐫𝐫|2

𝐫𝐫
|𝐫𝐫| =

𝐫𝐫
|𝐫𝐫|3 

Now, the position vector 𝐫𝐫 which points from the position of the charge d𝑞𝑞, which is 𝑥𝑥 𝐱𝐱�, to the 
position 𝐫𝐫0 can be written as: 𝐫𝐫(𝑥𝑥) = 𝐫𝐫0 − 𝑥𝑥 𝐱𝐱� = (0,0,1) − (𝑥𝑥, 0,0) = (−𝑥𝑥)𝐱𝐱� + 𝐳𝐳�. Therefore, 
|𝐫𝐫(𝑥𝑥)| = (𝑥𝑥2 + 12)1/2, and putting it all together: 

𝑑𝑑𝐄𝐄 = d𝑥𝑥 𝑘𝑘 𝜆𝜆(𝑥𝑥)
𝐫𝐫(𝑥𝑥)

|𝐫𝐫(𝑥𝑥)|3 = d𝑥𝑥 𝑘𝑘 𝜆𝜆(𝑥𝑥)
(−𝑥𝑥)𝐱𝐱� + 𝐳𝐳�

(1 + 𝑥𝑥2)3/2 

Which we can substitute into the integral. Also, use 𝜆𝜆(𝑥𝑥) = 𝜆𝜆0(1 + 𝑥𝑥2)3/2 from the given data: 

𝐄𝐄 = �d𝐄𝐄 = � d𝑥𝑥 𝑘𝑘 𝜆𝜆0(1 + 𝑥𝑥2)3/2 (−𝑥𝑥)𝐱𝐱� + 𝐳𝐳�
(1 + 𝑥𝑥2)3/2 

2

0
= 𝑘𝑘𝜆𝜆0 � d𝑥𝑥 [(−𝑥𝑥)𝐱𝐱� + 𝐳𝐳�]

2

0
= 𝑘𝑘𝜆𝜆0(−2𝐱𝐱� + 2𝐳𝐳�) 
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B. DIFFERENTIATION OF VECTORS 

Remember: The derivative of a function is telling us how much the output (𝑓𝑓) changes when we 
change the input (𝑥𝑥), i.e. it tells us the ratio d𝑓𝑓/d𝑥𝑥 such that: 

𝑥𝑥 ↦ 𝑓𝑓 

𝑥𝑥 + d𝑥𝑥 ↦ 𝑓𝑓 + d𝑓𝑓 

You can picture a function as a mechanism that connects a moving knob in the input with a moving 
knob in the output. The derivative is the ratio of how much the output knob moves when you move 
the input. The ratio tends to the derivative when the nudge is so small that the relation is linear: 

 

 

But what if we have multiple outputs? Then we have a vector which depends on a single variable 𝐯𝐯(𝑢𝑢). 
You can still picture it with knobs. Changing the input changes all the outputs: 

 

How do we do a differentiation in this context? The answer is obvious, just calculate the change on 
each output separately, that is, do the derivative of each component. 

d𝐯𝐯
d𝑢𝑢

= �

d𝑣𝑣1/d𝑢𝑢
d𝑣𝑣2/d𝑢𝑢

⋮
d𝑣𝑣𝑀𝑀/d𝑢𝑢

� 

This intuitive picture can be justified mathematically by applying the linearity of the differentiation: 

d𝐯𝐯
d𝑢𝑢

=
d

d𝑢𝑢
(𝑣𝑣1𝐞𝐞1 + 𝑣𝑣2𝐞𝐞2 + ⋯+ 𝑣𝑣𝑀𝑀𝐞𝐞𝑀𝑀) =

d𝑣𝑣1
d𝑢𝑢

𝐞𝐞1 +
d𝑣𝑣2
d𝑢𝑢

𝐞𝐞2 + ⋯+
d𝑣𝑣𝑀𝑀
d𝑢𝑢

𝐞𝐞𝑀𝑀 

Also, we can derive it formally from the definition of a derivative: 

d𝐯𝐯
d𝑢𝑢

= lim
Δ𝑢𝑢→0

𝐯𝐯(𝑢𝑢 + Δ𝑢𝑢) − 𝐯𝐯(𝑢𝑢)
Δ𝑢𝑢

 

In fact, this definition gives us some intuition. The derivative of a vector is another vector which tells 
us the rate of change of the vector in both amplitude and direction. 

This simple calculation has very useful physical interpretations, especially when the vector output 
represents a position vector in space. 

• When the input variable is time and the output is the position vector 𝐫𝐫(𝑡𝑡), the successive 
derivatives tell us about velocity 𝐯𝐯(𝑡𝑡) = d𝐫𝐫(𝑡𝑡)/d𝑡𝑡, acceleration 𝐚𝐚(𝑡𝑡) = d2𝐫𝐫(𝑡𝑡)/d𝑡𝑡2, etc. 
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3) Example: A particle follows the following path as a function of time: 

 

𝐫𝐫(𝑡𝑡) =

⎝

⎜
⎛

1
4

sin(3𝜋𝜋𝑡𝑡) +
𝑡𝑡

10
1
2
− 𝑡𝑡

𝑡𝑡 cos(𝑡𝑡) ⎠

⎟
⎞

 

 
Calculate the instantaneous velocity and acceleration. 
 

Solution: This is a ℝ → ℝ3 function, so the time derivative just needs to be applied to each 
component. 

𝐯𝐯(𝑡𝑡) =
d𝐫𝐫
d𝑡𝑡

= �
d𝑥𝑥/d𝑡𝑡
d𝑦𝑦/d𝑡𝑡
d𝑧𝑧/d𝑡𝑡

� = �

3𝜋𝜋
4

cos(3𝜋𝜋𝑡𝑡) +
1

10
−1

cos(𝑡𝑡) − 𝑡𝑡 sin(𝑡𝑡)

� 

𝐚𝐚(𝑡𝑡) =
d𝐯𝐯
d𝑡𝑡

= �
d𝑣𝑣𝑥𝑥/d𝑡𝑡
d𝑣𝑣𝑦𝑦/d𝑡𝑡
d𝑣𝑣𝑧𝑧/d𝑡𝑡

� = �
−

9𝜋𝜋2

4
sin(3𝜋𝜋𝑡𝑡)

0
−2 sin(𝑡𝑡) − 𝑡𝑡 cos(𝑡𝑡)

� 

 
If we actually plot this path (by joining the ends of the position vectors 𝐫𝐫 placed at the origin), and 
plot also the velocity 𝐯𝐯 and acceleration 𝐚𝐚 vectors placed at the appropriate position, then we clearly 
see that the velocity is a vector always tangent to the curve, and the acceleration is always pointing 
in the direction in which the curve is being bent. This is a section of the curve for times 𝑡𝑡 ∈ [0,1]. 
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TANGENT VECTOR 

 

 

DIFFERENTIAL OF A VECTOR 

We can define the differential of a vector d𝐫𝐫 in a similar way to that of a scalar. Consider a change 
Δ𝐫𝐫 in a vector caused by a change Δ𝑡𝑡 in its parameter. When Δ𝑡𝑡 → 𝑑𝑑𝑡𝑡 becomes increasingly small 
(approaching zero, becoming a differential) then Δ𝐫𝐫 → d𝐫𝐫. 

The differential of a vector is itself a vector, i.e. it has components in a basis. For example, we can 
write the differential of position as: 

d𝐫𝐫 =
d𝐫𝐫
d𝑡𝑡

d𝑡𝑡 = 𝐯𝐯 d𝑡𝑡 

So that d𝐫𝐫 is a vector that has a magnitude |𝐯𝐯| d𝑡𝑡 and is oriented in the same direction as 𝐯𝐯. 

 

DIFFERENTIATING SCALAR AND CROSS PRODUCTS 

The rule for differentiating dot and cross products take identical form to the product rule with 
scalars: 

d
d𝑢𝑢

(𝐚𝐚 ⋅ 𝐛𝐛) = �𝐚𝐚 ⋅
d𝐛𝐛
d𝑢𝑢
� + �

d𝐚𝐚
du

⋅ 𝐛𝐛� 

d
d𝑢𝑢

(𝐚𝐚 × 𝐛𝐛) = �𝐚𝐚 ×
d𝐛𝐛
d𝑢𝑢
� + �

d𝐚𝐚
du

× 𝐛𝐛� 

 

In general, when 𝐫𝐫(𝑢𝑢) defines a curve in space, the derivative d𝐫𝐫/d𝑢𝑢 gives us a tangent 
vector to the curve. 
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3.3 PARTIAL DIFFERENTIATION 

We have seen that integration and differentiation is easy to do on a function with multiple outputs. 
The interesting cases appear when a function has multiple inputs. Let’s start simple, with the case of 
multiple inputs and single output. 

 

A. MULTIPLE INPUTS: PARTIAL DERIVATIVES 

A function of multiple inputs can be pictured as follows: 

 

Each of the input knobs will affect the output. The partial derivative tells us how much 𝑓𝑓 moves when 
we move each of the input knobs, while keeping the others constant. For example, we look at the 
ratio Δ𝑓𝑓/Δ𝑥𝑥 when Δ𝑥𝑥 goes to zero. Of course, this ratio depends on the value of all the inputs. 

Let’s consider for simplicity functions of two variables 𝑓𝑓(𝑥𝑥, 𝑦𝑦). These can be represented as the 
variation in height with position in a mountainous landscape 

 

It is clear that 𝑓𝑓(𝑥𝑥,𝑦𝑦) will have a gradient in all directions in the 𝑥𝑥𝑦𝑦-plane. However, we can consider 
the simpler case of finding the rate of change of 𝑓𝑓(𝑥𝑥, 𝑦𝑦) in the positive 𝑥𝑥- and 𝑦𝑦- directions. These are 
the partial derivatives with respect to 𝑥𝑥 and 𝑦𝑦 respectively. 

We may define the partial derivative with respect to 𝑥𝑥 by defining a one-variable function of 𝑥𝑥 when 
𝑦𝑦 is held fixed and treated as a constant: 𝑓𝑓(𝑥𝑥,𝑦𝑦0). To signify that the derivative is with respect to 𝑥𝑥, 
but at the same time to recognize that a derivative with respect to 𝑦𝑦 also exists, we denote the 
derivative using the partial derivative sign as: 𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥. It is formally defined as the limit: 

 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= lim
Δ𝑥𝑥→0

𝑓𝑓(𝑥𝑥 + Δ𝑥𝑥, 𝑦𝑦) − 𝑓𝑓(𝑥𝑥,𝑦𝑦)
Δ𝑥𝑥

  

 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

3.3 (2) 

The definition is trivially extended to the case of 𝑀𝑀 input variables by keeping all the others constant. 
Sometimes when teaching about partial derivatives, it is useful and common practice to indicate those 
variables that are held constant by writing them as subscripts to the derivative symbol. Thus, for the 
two variable function 𝑓𝑓(𝑥𝑥,𝑦𝑦) we can write: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

≡ �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
�
𝑦𝑦

 

Importantly, the result of this partial derivative is another function which depends on the same inputs. 
It is common to denote the partial derivative with subscripts of the function.  

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑓𝑓𝑥𝑥(𝑥𝑥,𝑦𝑦) 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 𝑓𝑓𝑦𝑦(𝑥𝑥,𝑦𝑦) 

HIGHER ORDER PARTIAL DERIVATIVES: 

Now we can apply additional partial derivatives to these new functions. These are partial derivatives 
of higher order. Interestingly, we may change the variable held constant in each successive 
differentiation, leading to cross partial derivatives. For example, all possible second order partial 
derivatives of a 2-variable function 𝑓𝑓(𝑥𝑥,𝑦𝑦) are: 

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

= 𝑓𝑓𝑥𝑥𝑥𝑥 
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

= 𝑓𝑓𝑦𝑦𝑦𝑦 

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

= 𝑓𝑓𝑥𝑥𝑦𝑦 
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

= 𝑓𝑓𝑦𝑦𝑥𝑥 

Only three of these are independent, because it can be shown that provided the second partial 
derivatives are continuous at the point in question, then the following relation is always obeyed: 

 

You may ask “Why?”. See formal proof: https://math.stackexchange.com/questions/965018/why-does-the-order-not-matter-partial-d 

“Ok, I believe the proof… but still… WHY?” See different geometrical interpretations: 
https://math.stackexchange.com/questions/942538/geometric-interpretation-of-mixed-partial-derivatives 

 

1) Find all first and second partial derivatives of the function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 2𝑥𝑥3𝑦𝑦2 + 𝑦𝑦3 

The first partial derivatives are calculated by assuming the other variable is a constant: 
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 6𝑥𝑥2𝑦𝑦2 
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 4𝑥𝑥3𝑦𝑦 + 3𝑦𝑦2 

And the second partial derivatives are obtained by performing partial derivatives on the first ones: 

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

= 12𝑥𝑥𝑦𝑦2 
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

= 4𝑥𝑥3 + 6𝑦𝑦 

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

= 12𝑥𝑥2𝑦𝑦 
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

= 12𝑥𝑥2𝑦𝑦 
 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

=
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

 

 

https://math.stackexchange.com/questions/965018/why-does-the-order-not-matter-partial-d
https://math.stackexchange.com/questions/942538/geometric-interpretation-of-mixed-partial-derivatives
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B. TOTAL DIFFERENTIAL 

What if we move all the inputs simultaneously? What happens then with the output? 

 

Clearly, the movement of the output d𝑓𝑓 must depend on the movement of each of the inputs d𝑥𝑥, d𝑦𝑦, 
d𝑧𝑧. In fact, we know how much each input changes the output, so if the changes are tiny, the total 
change in 𝑓𝑓 will be the sum of the changes caused by each changing input. 

This is called the total differential d𝑓𝑓: 

 

It tells us how much 𝑓𝑓 changes as a function of how much we change the different inputs. 

Let’s consider the simple example 𝑓𝑓(𝑥𝑥,𝑦𝑦) which you can imagine as the height of a mountainous 
terrain. Clearly at every point in this landscape, the “slope” (ratio of vertical to horizontal change) 
depends on which direction you are moving! 

 

Since we are doing tiny steps, the mountainous terrain is locally considered as a flat plane (the tangent 
plane) so every possible direction’s slope can be calculated by knowing the slope in just the two 
directions 𝑥𝑥- and 𝑦𝑦-, i.e. in terms of the two first order partial derivatives: 

d𝑓𝑓 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦 

 

d𝑓𝑓 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

d𝑧𝑧 + ⋯ 
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The total differential is, in fact, the 𝑧𝑧- component of the parametric equation of the tangent plane in 
3D space, with d𝑥𝑥 and d𝑦𝑦 being the two free parameters, representing displacements in 𝑥𝑥 and 𝑦𝑦: 

𝐫𝐫plane(d𝑥𝑥, d𝑦𝑦) = �
𝑥𝑥
𝑦𝑦

𝑓𝑓(𝑥𝑥,𝑦𝑦)
�

�������
𝐫𝐫0

+ d𝑥𝑥 �
1
0

𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥
�

�������
𝐯𝐯1

+ d𝑦𝑦 �
0
1

𝜕𝜕𝑓𝑓/𝜕𝜕𝑦𝑦
�

�������
𝐯𝐯2

= �
𝑥𝑥 + d𝑥𝑥
𝑦𝑦 + d𝑦𝑦

𝑓𝑓(𝑥𝑥,𝑦𝑦) + d𝑓𝑓(d𝑥𝑥, d𝑦𝑦)
�  

 

2) Find the total differential d𝑓𝑓 of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 3𝑥𝑥𝑦𝑦.  

d𝑓𝑓 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦 

The partial derivatives are: 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 2𝑥𝑥 + 3𝑦𝑦 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 3𝑥𝑥. Therefore: 

d𝑓𝑓 = (2𝑥𝑥 + 3𝑦𝑦)d𝑥𝑥 + (3𝑥𝑥)d𝑦𝑦 

 

3) Find the total differential d𝑓𝑓 of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑦𝑦𝑒𝑒𝑥𝑥+𝑦𝑦.  

d𝑓𝑓 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦 

The partial derivatives are: 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝑦𝑦𝑒𝑒𝑥𝑥+𝑦𝑦 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝑦𝑦𝑒𝑒𝑥𝑥+𝑦𝑦 + 𝑒𝑒𝑥𝑥+𝑦𝑦. Therefore: 

d𝑓𝑓 = (𝑦𝑦𝑒𝑒𝑥𝑥+𝑦𝑦)d𝑥𝑥 + (1 + 𝑦𝑦)𝑒𝑒𝑥𝑥+𝑦𝑦d𝑦𝑦 
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C. STATIONARY POINTS OF FUNCTIONS OF TWO VARIABLES 

 

In single variable functions 𝑓𝑓(𝑥𝑥) the stationary points occur when d𝑓𝑓 = 0 which happens when 
d𝑓𝑓/d𝑥𝑥 = 0. For two-variable functions 𝑓𝑓(𝑥𝑥,𝑦𝑦), the stationary points also occur when d𝑓𝑓 = 0 in every 
direction, i.e. when the tangent plane is horizontal ⟺ when both first order partial derivatives are 
zero: 

 

The stationary points of 𝑓𝑓(𝑥𝑥,𝑦𝑦) can be of three different types: a local maximum, a local minimum, 
or a saddle point. Saddle points are locally flat, but non-locally after some distance, 𝑓𝑓 increases in 
some direction(s) but decreases in some other direction(s).  

As with functions 𝑓𝑓(𝑥𝑥), this classification can be achieved by looking at second order derivatives. 
However, since now we have lots of different directions to move along, this all becomes a bit trickier. 
It is much easier to understand by considering the Taylor expansion of a 2D function 𝑓𝑓(𝑥𝑥, 𝑦𝑦). 

TAYLOR EXPANSION OF A 2D FUNCTION 

 

Expanding the bracket for the first three terms 𝑛𝑛 = 0,1,2 explicitly, we have: 

 

Stationary points   ⟺    d𝑓𝑓 = 0   ⟺    
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 0 

 

𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥0 + Δ𝑥𝑥,𝑦𝑦0 + Δ𝑦𝑦) = 

= �
1
𝑛𝑛!
��Δ𝑥𝑥

𝜕𝜕
𝜕𝜕𝑥𝑥

+ Δ𝑦𝑦
𝜕𝜕
𝜕𝜕𝑦𝑦
�
𝑛𝑛

𝑓𝑓(𝑥𝑥,𝑦𝑦)�
𝑥𝑥0,𝑦𝑦0

∞

𝑛𝑛=0

 

= 𝑓𝑓(𝑥𝑥0,𝑦𝑦0) +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

Δ𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

Δ𝑦𝑦
���������

first order Δ𝜕𝜕(Δ𝑥𝑥,Δ𝑦𝑦)�������������������
equation of tangent plane

+
1
2
�
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

(Δ𝑥𝑥)2 +
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

(Δ𝑦𝑦)2 + 2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(Δ𝑥𝑥Δ𝑦𝑦)� 
�����������������������������

second order correction Δ(2)𝜕𝜕(Δ𝑥𝑥,Δ𝑦𝑦)
Note: Δ(2) is my  notation,   not standard

+⋯ 
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Unfortunately, checking the sign of Δ(2)𝑓𝑓 in all directions is not as simple as checking the sign of 
𝜕𝜕2𝑓𝑓/𝜕𝜕𝑥𝑥2, 𝜕𝜕2𝑓𝑓/𝜕𝜕𝑦𝑦2 and 𝜕𝜕2𝑓𝑓/𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦 because the behaviour along the directions 𝑥𝑥 and 𝑦𝑦 might be 
different to the behaviour along some other direction! 

 

Example: In the figure we show 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 1 − 7(𝑥𝑥 + 𝑦𝑦)2 + (𝑥𝑥 − 𝑦𝑦)2 = 1 − 3𝑥𝑥2 − 8𝑥𝑥𝑦𝑦 − 3𝑦𝑦2  
The first partial derivatives are 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
= −6𝑥𝑥 − 8𝑦𝑦 and 𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦
= −8𝑥𝑥 − 6𝑦𝑦. 

Both are zero at the origin (𝑥𝑥,𝑦𝑦) = (0,0), which is therefore a stationary point. The second partial 
derivatives are:  

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

= 𝑓𝑓𝑥𝑥𝑥𝑥 = −6 
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

= 𝑓𝑓𝑦𝑦𝑦𝑦 = −6 

𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

= 𝑓𝑓𝑥𝑥𝑦𝑦 = −8 
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

= 𝑓𝑓𝑥𝑥𝑦𝑦 = −8 

All the second order partial derivatives are negative… HOWEVER the point is not a local maximum.  
Consider the second order correction term in the Taylor expansion: 

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) =
1
2
�
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

(Δ𝑥𝑥)2 +
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

(Δ𝑦𝑦)2 + 2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

(Δ𝑥𝑥Δ𝑦𝑦)� = −3(Δ𝑥𝑥)2 − 3(Δ𝑦𝑦)2 − 8(Δ𝑥𝑥Δ𝑦𝑦) 

It is not negative for every direction! For example, when we move along the diagonal direction Δ𝐬𝐬 =
(Δ𝑥𝑥,Δ𝑦𝑦) = (1,−1), then Δ(2)𝑓𝑓(Δ𝑥𝑥 = −1,Δ𝑦𝑦 = −1) = 2 is positive, as clearly shown in the figure. 

Stationary values for function 𝑓𝑓(𝑥𝑥, 𝑦𝑦): 

• Stationary point if Δ𝑓𝑓 = 0 in all directions ⟺  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 0 

• Local maxima if Δ(2)𝑓𝑓 < 0 in all directions. 
• Local minima if Δ(2)𝑓𝑓 > 0 in all directions. 
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Therefore, to guarantee that we have a local minimum, we need to guarantee that: Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) =
1
2
�𝑓𝑓𝑥𝑥𝑥𝑥(Δ𝑥𝑥)2 + 𝑓𝑓𝑦𝑦𝑦𝑦(Δ𝑦𝑦)2 + 2𝑓𝑓𝑥𝑥𝑦𝑦(Δ𝑥𝑥Δ𝑦𝑦)� > 0 for every possible combination of Δ𝑥𝑥 and Δ𝑦𝑦 (i.e. for 

every direction). With some simple algebra, we can rearrange the second order correction to:  

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) =
1
2 �
𝑓𝑓𝑥𝑥𝑥𝑥 �Δ𝑥𝑥 +

𝑓𝑓𝑥𝑥𝑦𝑦
𝑓𝑓𝑥𝑥𝑥𝑥

Δ𝑦𝑦�
2

+ �
𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2

𝑓𝑓𝑥𝑥𝑥𝑥
� (Δ𝑦𝑦)2� 

Which is easier to check for its sign as the squared terms are always positive. We only need to look at 
the non-squared terms. This gives us a recipe to classify stationary points: 

 

This is all easy to derive from the rearranged second order correction, which I will give in the exam.  

 

HIGHER NUMBER OF DIMENSIONS 

(Not included in the exam, but I include it here for completeness) 

The situation is more complex when the function has more than two input variables, but the essence 
is the same: we may consider the Taylor expansion 𝑓𝑓 = 𝑓𝑓0 + Δ𝑓𝑓 + Δ(2)𝑓𝑓 + ⋯ with 𝑛𝑛-th order 
corrections and follow the same logic. Finding the sign of Δ(2)𝑓𝑓 in all directions involves solving 
eigenvalues and eigenvectors! 

For completeness, here is the Taylor expansion in the general case of 𝑀𝑀 input variables, collected as 
an input vector 𝐱𝐱: 

𝑓𝑓(𝐱𝐱) = �
1
𝑛𝑛!

[(Δ𝐱𝐱 ⋅ ∇)𝑛𝑛𝑓𝑓(𝐱𝐱)]𝐱𝐱=𝐱𝐱0

∞

𝑛𝑛=0

 

where ∇ is the nabla operator, defined as: ∇ ≡ � 𝜕𝜕
𝜕𝜕𝑥𝑥1

, 𝜕𝜕
𝜕𝜕𝑥𝑥2

, … , 𝜕𝜕
𝜕𝜕𝑥𝑥𝑀𝑀

�, Δ𝐱𝐱 ≡ (Δ𝑥𝑥1,Δ𝑥𝑥2, … ,Δ𝑥𝑥𝑀𝑀) and Δ𝐱𝐱 ⋅

∇ is a dot product between them. 

 

  

Stationary points for function 𝑓𝑓(𝑥𝑥,𝑦𝑦): 

• Stationary point if Δ𝑓𝑓 = 0 in all directions ⟺  𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 0 

• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 < 0 ⟹ Saddle point (easy case: if 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 have opposite sign) 
• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 > 0 ⟹ Maximum or minimum 

o Both 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 are positive ⟹ Local minima 
o Both 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 are negative ⟹ Local maxima 

• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 = 0 ⟹ Undetermined. There is a direction where the function is flat to 
second order. Further investigation (higher order Taylor) is required. 
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4) Show that the function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥3 exp(−𝑥𝑥2 − 𝑦𝑦2) has a maximum at the point (�3/2, 0), a 
minimum at (−�3/2, 0), and a stationary point at the entire 𝑦𝑦-axis whose nature cannot be 
determined by the above procedures. 

First, calculate the first partial derivatives (remember the product rule), and set them to zero to find 
the stationary points: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 3𝑥𝑥2 exp(−𝑥𝑥2 − 𝑦𝑦2) + 𝑥𝑥3(−2𝑥𝑥) exp(−𝑥𝑥2 − 𝑦𝑦2) = (3𝑥𝑥2 − 2𝑥𝑥4) exp(−𝑥𝑥2 − 𝑦𝑦2) = 0 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= −2𝑦𝑦𝑥𝑥3 exp(−𝑥𝑥2 − 𝑦𝑦2) = 0 

The second equation requires necessarily either 𝑥𝑥 = 0 or 𝑦𝑦 = 0. When 𝑥𝑥 = 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

=  𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 0 for all 

values of 𝑦𝑦, so the entire 𝑦𝑦 axis is a stationary point. When 𝑦𝑦 = 0, the first equation is zero at the 
locations 3𝑥𝑥2 − 2𝑥𝑥4 = 0 →   𝑥𝑥 = ±�3/2, so the two points  (±�3/2, 0) are stationary. 

Now we find the second partial derivatives to classify the stationary points (remember to use the 
product rule as needed): 

𝑓𝑓𝑥𝑥𝑥𝑥 = (4𝑥𝑥5 − 14𝑥𝑥3 + 6𝑥𝑥) exp(−𝑥𝑥2 − 𝑦𝑦2) , 
𝑓𝑓𝑦𝑦𝑦𝑦 = 𝑥𝑥3(4𝑦𝑦2 − 2) exp(−𝑥𝑥2 − 𝑦𝑦2) 
𝑓𝑓𝑥𝑥𝑦𝑦 = 2𝑥𝑥2𝑦𝑦(2𝑥𝑥2 − 3) exp(−𝑥𝑥2 − 𝑦𝑦2) 

If we substitute the pairs of values of 𝑥𝑥 and 𝑦𝑦 at 𝑥𝑥 = 0 we get: 𝑓𝑓𝑥𝑥𝑥𝑥 = 𝑓𝑓𝑦𝑦𝑦𝑦 = 𝑓𝑓𝑥𝑥𝑦𝑦 = 0, so those points 
are undetermined! The function is flat to second order here, and further study would be required. 

If we substitute the pairs of values of 𝑥𝑥 and 𝑦𝑦 at (±�3/2, 0) we get: 

𝑓𝑓𝑥𝑥𝑥𝑥 = ∓6 �
3
2

exp �−
3
2
� ,     𝑓𝑓𝑦𝑦𝑦𝑦 = ∓3 �

3
2

exp �−
3
2
� ,     𝑓𝑓𝑥𝑥𝑦𝑦 = 0 

Applying the criteria, 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 > 0, so that (�3/2, 0) is a maximum (𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 < 0) and 
(−�3/2, 0) is a minimum (𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 > 0). Here is an actual plot of the function. 
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D. CHAIN RULE  

What if the variables (𝑥𝑥,𝑦𝑦, 𝑧𝑧, … ) are themselves functions of a single variable 𝑠𝑠? This is represented 
in the following diagram: 

 

We may want to obtain the total derivative of 𝑓𝑓 with respect to 𝑠𝑠, i.e. how much the output 𝑓𝑓 moves 
when we move the input knob 𝑠𝑠, this is the usual one-dimensional derivative of a single variable 
function d𝑓𝑓/d𝑠𝑠. One way to obtain it is to substitute 𝑥𝑥(𝑠𝑠), 𝑦𝑦(𝑠𝑠), etc. into the function 𝑓𝑓(𝑥𝑥,𝑦𝑦, … ) and 
calculating the derivative in the traditional way. Another way is to use the chain rule, arrived at by 
simply dividing the total differential (d𝑓𝑓) by the differential of the variable (d𝑠𝑠): 

d𝑓𝑓 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

d𝑧𝑧 + ⋯ 

 

As a practical example, consider the energy of a mass 𝑚𝑚 moving at speed 𝑣𝑣 at a height ℎ in a 
gravitational field 𝑔𝑔. The energy is the sum of the potential and kinetic energies: 𝐸𝐸 = 𝑚𝑚𝑔𝑔ℎ + 1

2
𝑚𝑚𝑣𝑣2. 

This expression has partial derivatives 𝜕𝜕𝐸𝐸/𝜕𝜕ℎ and 𝜕𝜕𝐸𝐸/𝜕𝜕𝑣𝑣. However, the height ℎ and the speed 𝑣𝑣 
might both depend on a single parameter, e.g. they are functions of time 𝑡𝑡. We might then want to 
calculate the rate of change of energy with respect to time d𝐸𝐸/d𝑡𝑡. 

 

5) Given that 𝑥𝑥(𝑢𝑢) = 1 + 𝑎𝑎𝑢𝑢 and 𝑦𝑦(𝑢𝑢) = 𝑏𝑏𝑢𝑢3, find the rate of change of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑒𝑒−𝑦𝑦 with 
respect to 𝑢𝑢. 

Solution: The partial derivatives of 𝑓𝑓 are given by: 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝑒𝑒−𝑦𝑦 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= −𝑥𝑥𝑒𝑒−𝑦𝑦. The chain rule therefore 

gives us the total derivative: 

d𝑓𝑓
d𝑢𝑢

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥
d𝑢𝑢

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑢𝑢

= (𝑒𝑒−𝑦𝑦)(𝑎𝑎) + (−𝑥𝑥𝑒𝑒−𝑦𝑦)(3𝑏𝑏𝑢𝑢2) 

Which after substituting 𝑥𝑥 = 1 + 𝑎𝑎𝑢𝑢 and 𝑦𝑦 = 𝑏𝑏𝑢𝑢3 gives: 

d𝑓𝑓
d𝑢𝑢

= 𝑎𝑎𝑒𝑒−𝑏𝑏𝑢𝑢3 − 3𝑏𝑏𝑢𝑢2(1 + 𝑎𝑎𝑢𝑢)𝑒𝑒−𝑏𝑏𝑢𝑢3 

Note that we could have solved this exercise by brute force, directly obtaining 𝑓𝑓(𝑢𝑢) =
𝑓𝑓�𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢)� = (1 + 𝑎𝑎𝑢𝑢)𝑒𝑒−𝑏𝑏𝑢𝑢3 and finding the derivative d𝑓𝑓/d𝑢𝑢. 

 

Notice how the famous “product rule” is simply a specific case of this general chain rule! 

If 𝑓𝑓(𝑢𝑢, 𝑣𝑣) = 𝑢𝑢𝑣𝑣 with 𝑢𝑢 = 𝑢𝑢(𝑥𝑥) and 𝑣𝑣 = 𝑣𝑣(𝑥𝑥), then d𝜕𝜕
d𝑥𝑥

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢

d𝑢𝑢
d𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

d𝜕𝜕
d𝑥𝑥

= 𝑣𝑣 d𝑢𝑢
d𝑥𝑥

+ 𝑢𝑢 d𝜕𝜕
d𝑥𝑥

  

d𝑓𝑓
d𝑠𝑠

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥
d𝑠𝑠

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑠𝑠

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

d𝑧𝑧
d𝑠𝑠

+⋯ 
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TOTAL VS PARTIAL DERIVATIVE 

The exercise below introduces us to some interesting notation: In some contexts, it turns out that the 
variable 𝑠𝑠 on which the inputs depend may itself be one of the input variables of the function. For 
example, consider a function 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) in which 𝑦𝑦 = 𝑦𝑦(𝑥𝑥) and 𝑧𝑧 = 𝑧𝑧(𝑥𝑥). Then, from the chain rule 
above: 

d𝑓𝑓
d𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

d𝑧𝑧
d𝑥𝑥

 

Note that the left-hand side of this equation is the total derivative d𝑓𝑓/d𝑥𝑥, whilst the partial derivative 
𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥 appears as part of the right-hand side. In this case, the use of different symbols d and 𝜕𝜕 is 
helpful. This is the reason that a different symbol is used for partial derivatives. When evaluating 
this partial derivative, remember we must consider only the explicit appearances of 𝑥𝑥 in the function 
𝑓𝑓 without using the knowledge that changing 𝑥𝑥 necessarily changes 𝑦𝑦 and 𝑧𝑧. The contribution from 
these latter changes is precisely accounted for by the other terms. 

If you find this confusing, you can avoid all the confusion by using different variable names: you could 
use 𝑠𝑠 for the global input variable on which 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 depend, and use the chain rule with 𝑥𝑥(𝑠𝑠) = 𝑠𝑠. 

 

6) Find the total derivative of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 3𝑥𝑥𝑦𝑦 with respect to 𝑥𝑥 given that 𝑦𝑦 = sin−1 𝑥𝑥 

Solution: The chain rule gives us: 

d𝑓𝑓
d𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑥𝑥

     �or, we could use 
d𝑓𝑓
d𝑠𝑠

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥
d𝑠𝑠

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑠𝑠

 with 𝑥𝑥 = 𝑠𝑠� 

On one hand, we need to find d𝑦𝑦
d𝑥𝑥

 

𝑥𝑥 = sin𝑦𝑦 →
d𝑥𝑥
d𝑦𝑦

= cos𝑦𝑦 →
d𝑦𝑦
d𝑥𝑥

=
1

cos𝑦𝑦
=

1

�1 − sin2 𝑦𝑦
=

1
√1 − 𝑥𝑥2

 

On the other hand, we need to find the partial derivatives of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 3𝑥𝑥𝑦𝑦, calculated always 
assuming that the other variable is constant, without worrying for the fact that 𝑦𝑦 changes with 𝑥𝑥. 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 2𝑥𝑥 + 3𝑦𝑦        
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 3𝑥𝑥 

 

d𝑓𝑓
d𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑥𝑥

= (2𝑥𝑥 + 3𝑦𝑦) +
3𝑥𝑥

√1 − 𝑥𝑥2
 

We can now substitute 𝑦𝑦 = sin−1 𝑥𝑥 to get: 

d𝑓𝑓
d𝑥𝑥

= 2𝑥𝑥 + 3 sin−1 𝑥𝑥 +
3𝑥𝑥

√1 − 𝑥𝑥2
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E. CHANGE OF VARIABLES 

What if the variables are themselves functions of multiple variables?  

 

This is a CHANGE OF VARIABLES: for example – changing cartesian to cylindrical coordinates as input 
variables. The result is a new function of the new variables: 𝑔𝑔(𝑢𝑢1,𝑢𝑢2, … , 𝑢𝑢𝐿𝐿) =
𝑓𝑓(𝑥𝑥1(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝐿𝐿),𝑥𝑥2(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝐿𝐿), … , 𝑥𝑥𝑀𝑀(𝑢𝑢1,𝑢𝑢2, … ,𝑢𝑢𝐿𝐿)). 

 

Since this function represents the same transformation, we generally use the same symbol 𝑓𝑓 (instead 
of a new symbol 𝑔𝑔) but we explicitly write the names of the input variables, e.g. 𝑓𝑓(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3) vs. 
𝑓𝑓(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3). We may then want to know how are the partial derivatives with respect to the old and 
new variables related. The answer is simply to apply the chain rule for each variable. This time, 
everything is a partial derivative: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢1

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑢𝑢1

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥2
𝜕𝜕𝑢𝑢1

+ ⋯+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑀𝑀

𝜕𝜕𝑥𝑥𝑀𝑀
𝜕𝜕𝑢𝑢1

𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢2

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑢𝑢2

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥2
𝜕𝜕𝑢𝑢2

+ ⋯+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑀𝑀

𝜕𝜕𝑥𝑥𝑀𝑀
𝜕𝜕𝑢𝑢2

⋮
𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢𝐿𝐿

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥1

𝜕𝜕𝑥𝑥1
𝜕𝜕𝑢𝑢𝐿𝐿

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑥𝑥2
𝜕𝜕𝑢𝑢𝐿𝐿

+ ⋯+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑀𝑀

𝜕𝜕𝑥𝑥𝑀𝑀
𝜕𝜕𝑢𝑢𝐿𝐿

 

In summation notation: 

 

 

  

In general, the number of variables need not be equal 𝑀𝑀 ≠ 𝐿𝐿.  

BUT when 𝑢𝑢’s and 𝑥𝑥’s are two sets of independent variables, then 𝑀𝑀 = 𝐿𝐿. 

 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢𝑗𝑗

= �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥𝑖𝑖
𝜕𝜕𝑢𝑢𝑗𝑗

𝑀𝑀

𝑖𝑖=1

       for      𝑗𝑗 = 1,2, … , 𝐿𝐿 
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7) The 2D wave equation is 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑦𝑦2
= 1

𝜕𝜕2
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑡𝑡2

 written for a function 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡) in cartesian 

coordinates (𝑥𝑥,𝑦𝑦) and time 𝑡𝑡. Rewrite the wave equation using polar coordinates (𝜌𝜌,𝜙𝜙). This 
equation is very common in physics and having it in polar form is even more common. The polar 
form is difficult to remember, and we usually look it up… but for once, let’s derive it here using 
the chain rule. (This problem is too messy to ask for in an exam. But it is educational.) 

Solution: The equations for the change of variables (in both directions) are given by: 

�𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙
𝑦𝑦 = 𝜌𝜌 sin𝜙𝜙 →   �𝜌𝜌 = (𝑥𝑥2 + 𝑦𝑦2)1/2

𝜙𝜙 = tan−1(𝑦𝑦/𝑥𝑥)
 

Notice that the time variable 𝑡𝑡 is unchanged and will not be involved in the change of variables. 
Before we start. Some useful simplifications are (using trigonometry): 

→   �
cos𝜙𝜙 = 𝑥𝑥/𝜌𝜌
sin𝜙𝜙 = 𝑦𝑦/𝜌𝜌
𝑥𝑥2 + 𝑦𝑦2 = 𝜌𝜌2

 

 

We need to find the partial derivatives 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 in terms of cylindrical coordinates. For that purpose, 

we use the change of variables chain rule: 

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

 

The four partial derivatives between coordinates (𝜌𝜌,𝜙𝜙) and (𝑥𝑥,𝑦𝑦) are (remember derivative of 
tan−1 𝑢𝑢(𝑥𝑥) = 𝑢𝑢𝑥𝑥/(1 + 𝑢𝑢2) using the notation 𝑢𝑢𝑥𝑥 ≡ 𝜕𝜕𝑢𝑢/𝜕𝜕𝑥𝑥): 

 

So we substitute into the chain rule: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

= cos𝜙𝜙
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

   

𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

= sin𝜙𝜙
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

+
cos𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

   

Since this is true for any function 𝑓𝑓, we can interpret the “partial derivative with respect to 𝑥𝑥 and 𝑦𝑦” 
as operators: 

𝜕𝜕
𝜕𝜕𝑥𝑥

= cos𝜙𝜙
𝜕𝜕
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙

   

𝜕𝜕
𝜕𝜕𝑦𝑦

= sin𝜙𝜙
𝜕𝜕
𝜕𝜕𝜌𝜌

+
cos𝜙𝜙
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙

   

Which can be applied twice to obtain the double derivatives: 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑥𝑥

=
𝑥𝑥

(𝑥𝑥2 + 𝑦𝑦2)1/2 = cos𝜙𝜙      
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

=
𝑢𝑢𝑥𝑥

1 + 𝑢𝑢2 �𝑢𝑢=𝑦𝑦𝑥𝑥
 =

−(𝑦𝑦/𝑥𝑥2)
1 + (𝑦𝑦/𝑥𝑥)2 =

−𝑦𝑦
𝑥𝑥2 + 𝑦𝑦2

= −
sin𝜙𝜙
𝜌𝜌

 

𝜕𝜕𝜌𝜌
𝜕𝜕𝑦𝑦

=
𝑦𝑦

(𝑥𝑥2 + 𝑦𝑦2)1/2 = sin𝜙𝜙   
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

=
𝑢𝑢𝑦𝑦

1 + 𝑢𝑢2 �𝑢𝑢=𝑦𝑦𝑥𝑥
 =

(1/𝑥𝑥)
1 + (𝑦𝑦/𝑥𝑥)2 =

𝑥𝑥
𝑥𝑥2 + 𝑦𝑦2

=
cos𝜙𝜙
𝜌𝜌
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𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

= �cos𝜙𝜙
𝜕𝜕
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙

��cos𝜙𝜙
𝜕𝜕
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙

�𝑓𝑓 

Start by applying the first (rightmost) operator to 𝑓𝑓. This step is trivial: 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

= �cos𝜙𝜙
𝜕𝜕
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙

��cos𝜙𝜙
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

� 

But be very careful in the next step: for instance, when we apply 𝜕𝜕
𝜕𝜕𝜕𝜕

 to the term −sin𝜙𝜙
𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙

, we need 

to use the product rule! These are the four required terms fleshed out: 

�cos𝜙𝜙
𝜕𝜕
𝜕𝜕𝜌𝜌
� cos𝜙𝜙

𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

= cos2 𝜙𝜙
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌2

 

�cos𝜙𝜙
𝜕𝜕
𝜕𝜕𝜌𝜌
�
−sin𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

= − cos𝜙𝜙 sin𝜙𝜙 �
𝜕𝜕
𝜕𝜕𝜌𝜌

�
1
𝜌𝜌
�
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

+
1
𝜌𝜌
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

� = cos𝜙𝜙 sin𝜙𝜙 �
1
𝜌𝜌2

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

−
1
𝜌𝜌
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

� 

�
−sin𝜙𝜙
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙

� cos𝜙𝜙
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

=
−sin𝜙𝜙
𝜌𝜌

�
𝜕𝜕
𝜕𝜕𝜙𝜙

(cos𝜙𝜙)
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

+ cos𝜙𝜙
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

� =
sin2 𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙 cos𝜙𝜙

𝜌𝜌
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

 

�
sin𝜙𝜙
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙

�
sin𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

=
sin𝜙𝜙
𝜌𝜌

�
𝜕𝜕
𝜕𝜕𝜙𝜙

�
sin𝜙𝜙
𝜌𝜌

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

+
sin𝜙𝜙
𝜌𝜌

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜙𝜙2� =

sin𝜙𝜙 cos𝜙𝜙
𝜌𝜌2

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

+
sin2 𝜙𝜙
𝜌𝜌2

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜙𝜙2 

 

Adding the four terms we get the final form for the double partial 𝑥𝑥 derivative: 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

= cos2 𝜙𝜙
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌2

+ cos𝜙𝜙 sin𝜙𝜙 �
1
𝜌𝜌2

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

−
1
𝜌𝜌
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

�+
sin2 𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

−
sin𝜙𝜙 cos𝜙𝜙

𝜌𝜌
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

+
sin𝜙𝜙 cos𝜙𝜙

𝜌𝜌2
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

+
sin2 𝜙𝜙
𝜌𝜌2

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜙𝜙2 

= cos2 𝜙𝜙
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌2

+
2 sin𝜙𝜙 cos𝜙𝜙

𝜌𝜌2
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

−
2 sin𝜙𝜙 cos𝜙𝜙

𝜌𝜌
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

+
sin2 𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

+
sin2 𝜙𝜙
𝜌𝜌2

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜙𝜙2 

 

And a similar long procedure for the 𝑦𝑦 double partial derivative gives: 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

= sin2 𝜙𝜙
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌2

−
2 sin𝜙𝜙 cos𝜙𝜙

𝜌𝜌2
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

+
2 sin𝜙𝜙 cos𝜙𝜙

𝜌𝜌
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌𝜕𝜕𝜙𝜙

+
cos2 𝜙𝜙
𝜌𝜌

𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

+
cos2 𝜙𝜙
𝜌𝜌2

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜙𝜙2 

Adding both together, we can cancel some terms, and simplify others via cos2 𝜙𝜙 + sin2 𝜙𝜙 = 1, so: 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

=
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌2

+
1
𝜌𝜌
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

+
1
𝜌𝜌2

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜙𝜙2 

It is interesting that single derivatives appear in this expression which originally involved only double 
derivatives. Also note that the dimensions of the three terms are the same, as they must be if we are 
adding them together (𝜌𝜌 and its differentials have dimensions of length, while 𝜙𝜙 and its differentials 
are dimensionless radians). So, finally, the 2D wave equation in polar coordinates may be written as: 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜌𝜌2

+
1
𝜌𝜌
𝜕𝜕𝑓𝑓
𝜕𝜕𝜌𝜌

+
1
𝜌𝜌2

𝜕𝜕2𝑓𝑓
𝜕𝜕𝜙𝜙2 =

1
𝑣𝑣2
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑡𝑡2
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F. DIFFERENTIATION WITH MULTIPLE INPUTS AND OUTPUTS: THE 
JACOBIAN MATRIX 

Finally, we will generalize the concept of derivative to the most general case. A vector function with 
𝑁𝑁 input variables and 𝑀𝑀 output components: 

 

In this case, moving each input knob will move all output ones, so we can simply define a partial 
derivative for each input-to-output pair. All in all, there will be 𝑁𝑁 × 𝑀𝑀 first order partial derivatives, 
which can be arranged as a matrix, called the Jacobian matrix. 

 

We can write the total differential for each of the output components (considering each output as if 
it was a different function 𝑓𝑓𝑖𝑖) so we use the known equation for total differential: 

d𝑓𝑓𝑖𝑖 = �
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥1

�d𝑥𝑥1 + �
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥2

�d𝑥𝑥2 + ⋯+ �
𝜕𝜕𝑓𝑓𝑖𝑖
𝜕𝜕𝑥𝑥𝑀𝑀

�d𝑥𝑥𝑀𝑀 

telling us how much each output changes when we vary all the inputs. We can do this for all the output 
components of the function at the same time, by writing the vector total differential: 

d𝐟𝐟 = �
𝜕𝜕𝐟𝐟
𝜕𝜕𝑥𝑥1

�d𝑥𝑥1 + �
𝜕𝜕𝐟𝐟
𝜕𝜕𝑥𝑥2

�d𝑥𝑥2 + ⋯+ �
𝜕𝜕𝐟𝐟
𝜕𝜕𝑥𝑥𝑀𝑀

�d𝑥𝑥𝑀𝑀 

 which can be conveniently written as a matrix-vector multiplication involving the Jacobian: 

d𝐟𝐟 = �

d𝑓𝑓1
d𝑓𝑓2
⋮

d𝑓𝑓𝑁𝑁

� =

⎝

⎜
⎜
⎜
⎜
⎛
�
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

�d𝑥𝑥1 + �
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥2

�d𝑥𝑥2 + ⋯+ �
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑀𝑀

�d𝑥𝑥𝑀𝑀

�
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥1

�d𝑥𝑥1 + �
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥2

�d𝑥𝑥2 + ⋯+ �
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥𝑀𝑀

�d𝑥𝑥𝑀𝑀
⋮

�
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝑥𝑥1

�d𝑥𝑥1 + �
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝑥𝑥2

�d𝑥𝑥2 + ⋯+ �
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝑥𝑥𝑀𝑀

�d𝑥𝑥𝑀𝑀⎠

⎟
⎟
⎟
⎟
⎞

=

⎝

⎜
⎛

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

…
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑀𝑀

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝑥𝑥1

…
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝑥𝑥𝑀𝑀⎠

⎟
⎞

�������������
Jacobian matrix 𝐉𝐉

�
d𝑥𝑥1
⋮

d𝑥𝑥𝑀𝑀
�

�����
d𝐱𝐱

= 𝐉𝐉 d𝐱𝐱 

This total differential tells us how much the function changes when we move each of the inputs by a 
small amount. It is the high dimensional analogy to the usual differentiation:  

 

𝐉𝐉 ≡

⎝

⎜
⎛

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥1

…
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥𝑀𝑀

⋮ ⋱ ⋮
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝑥𝑥1

…
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝑥𝑥𝑀𝑀⎠

⎟
⎞

 

 

𝑓𝑓(𝑥𝑥)(ℝ → ℝ) 𝐟𝐟(𝐱𝐱)(ℝ𝑀𝑀 → ℝ𝑁𝑁) 
𝑥𝑥 → 𝑓𝑓 

𝑥𝑥 + d𝑥𝑥 → 𝑓𝑓 + �
d𝑓𝑓
d𝑥𝑥
�d𝑥𝑥�����
d𝜕𝜕

 

𝐱𝐱 → 𝐟𝐟 
𝐱𝐱 + d𝐱𝐱 → 𝐟𝐟 + 𝐉𝐉 d𝐱𝐱�

d𝐟𝐟
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LINEAR APPROXIMATIONS: 

Differentiation always deals with infinitesimal increments around a point, such that d𝑓𝑓 = 𝑓𝑓′ d𝑥𝑥 is 
exact because, locally, the function is a straight line. However, the same equation becomes a good 
approximation (but not exact) when considering finite steps Δ𝑥𝑥 if they are small. 

Consider the linear approximation (first order Taylor expansion) of a one-dimensional function 𝑓𝑓(𝑥𝑥) 
around a point 𝑥𝑥0: 

𝑓𝑓(𝑥𝑥0 + Δ𝑥𝑥) ≈  𝑓𝑓(𝑥𝑥0) ���
constant

+  
d𝑓𝑓
d𝑥𝑥

Δ𝑥𝑥 �����
Δ𝜕𝜕

linear function
of Δ𝑥𝑥

 

The Jacobian matrix generalizes the concept of the derivative, because it provides the best linear 
approximation to a function at a point. Any non-linear function 𝐟𝐟(𝐱𝐱) with an arbitrary number of 
inputs and outputs can be locally approximated by a linear function: 

 

8) Calculate the Jacobian matrix for the function 𝐟𝐟(𝑥𝑥,𝑦𝑦) = (𝑥𝑥2𝑦𝑦, 5𝑥𝑥 + sin𝑦𝑦). Hence find the best 
linear approximation to the function at the point (𝑥𝑥, 𝑦𝑦) = (1,1). 

Solution: We must calculate the four partial derivatives: 

𝜕𝜕𝑓𝑓1
𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑥𝑥

(𝑥𝑥2𝑦𝑦) = 2𝑥𝑥𝑦𝑦,          
𝜕𝜕𝑓𝑓1
𝜕𝜕𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑦𝑦

(𝑥𝑥2𝑦𝑦) = 𝑥𝑥2  

𝜕𝜕𝑓𝑓2
𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑥𝑥

(5𝑥𝑥 + sin𝑦𝑦) = 5,          
𝜕𝜕𝑓𝑓2
𝜕𝜕𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑦𝑦

(5𝑥𝑥 + sin𝑦𝑦) = cos𝑦𝑦 

So the Jacobian matrix is: 𝐉𝐉(𝑥𝑥,𝑦𝑦) = �2𝑥𝑥𝑦𝑦 𝑥𝑥2
5 cos𝑦𝑦�.  

The best linear approximation to the function is, at every point, given by: 

𝐟𝐟(𝑥𝑥0 + Δ𝑥𝑥,𝑦𝑦0 + Δ𝑦𝑦) ≈ 𝐟𝐟(𝑥𝑥0,𝑦𝑦0) + 𝐉𝐉(𝑥𝑥0,𝑦𝑦0) �Δ𝑥𝑥Δ𝑦𝑦� ≈ � 𝑥𝑥02𝑦𝑦0
5𝑥𝑥0 + sin𝑦𝑦0

� + �2𝑥𝑥0𝑦𝑦0 𝑥𝑥02
5 cos𝑦𝑦0

� �Δ𝑥𝑥Δ𝑦𝑦� 

At the point (𝑥𝑥0,𝑦𝑦0) = (1,1), the best linear approximation to the function is: 

𝐟𝐟(1 + Δ𝑥𝑥, 1 + Δ𝑦𝑦) ≈ �1
5� + �2 1

5 cos 1� �
Δ𝑥𝑥
Δ𝑦𝑦� = �

1 + 2Δ𝑥𝑥 + Δ𝑦𝑦
5 + 5Δ𝑥𝑥 + cos(1)Δ𝑦𝑦� 

𝐋𝐋(𝑥𝑥, 𝑦𝑦) = �
−2 + 2𝑥𝑥 + 𝑦𝑦

5𝑥𝑥 + cos(1) (𝑦𝑦 − 1)� after substituting Δ𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥0 and Δ𝑦𝑦 = 𝑦𝑦 − 𝑦𝑦0 

JACOBIAN DETERMINANT: 

The determinant of the Jacobian matrix is often used (we will use it in next chapters) and is referred 
to as Jacobian determinant det(𝐉𝐉), and most of the times (confusingly) as simply “the Jacobian”. It is 

often written as 𝜕𝜕(𝜕𝜕1,𝜕𝜕2,…,𝜕𝜕𝑁𝑁)
𝜕𝜕(𝑥𝑥1,𝑥𝑥2,…,𝑥𝑥𝑀𝑀) to help us remember how to build the matrix. 

𝐟𝐟(𝐱𝐱0 + Δ𝐱𝐱) ≈ 𝐟𝐟(𝐱𝐱0)���
constant

+  𝐉𝐉 Δ𝐱𝐱 ���
Δ𝐟𝐟

linear function
of Δ𝐱𝐱
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G. FINDING THE BASIS VECTORS FOR ARBITRARY COORDINATE SYSTEMS 

The conversion between coordinate systems is a typical example of a function with multiple inputs 
and multiple outputs.  

�
𝑥𝑥1 = 𝑥𝑥1(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3)
𝑥𝑥2 = 𝑥𝑥2(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3)
𝑥𝑥3 = 𝑥𝑥3(𝑢𝑢1,𝑢𝑢2,𝑢𝑢3)

 

One common application of partial differentiation in this case, is to find a vector pointing in the 
direction in which each coordinate moves the position vector.  

 

The magnitude of these vectors is in general not equal to one.  

 

 

9) Derive the unit-vector basis associated to cylindrical coordinates, and the scale factors: 

�
𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙
𝑦𝑦 = 𝜌𝜌 sin𝜙𝜙
𝑧𝑧 = 𝑧𝑧

 

Solution: The basis vectors are defined in terms of the following vectors: 

𝐞𝐞𝜕𝜕 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝜌𝜌

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜌𝜌

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝜌𝜌

,
𝜕𝜕𝑧𝑧
𝜕𝜕𝜌𝜌
� = (cos𝜙𝜙 , sin𝜙𝜙 , 0) 

𝐞𝐞𝜙𝜙 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝜙𝜙

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

,
𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

� = (−𝜌𝜌 sin𝜙𝜙 ,𝜌𝜌 cos𝜙𝜙 , 0) 

𝐞𝐞𝑧𝑧 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝑧𝑧

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

,
𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧
� = (0,0,1) 

The scale factors are the magnitude of these vectors: ℎ𝜕𝜕 = 1, ℎ𝜙𝜙 = 𝜌𝜌, ℎ𝑧𝑧 = 1. 

Dividing the vectors 𝐞𝐞𝑖𝑖 by their amplitude (the scale factors) we get the unit basis vectors: 

𝐞𝐞�𝜕𝜕 = 𝐞𝐞𝜕𝜕 = (cos𝜙𝜙 , sin𝜙𝜙 , 0) 

𝐞𝐞�𝜙𝜙 =
𝐞𝐞𝜙𝜙
𝜌𝜌

= (− sin𝜙𝜙 , cos𝜙𝜙 , 0) 

𝐞𝐞�𝑧𝑧 = 𝐞𝐞𝑧𝑧 = (0,0,1) 

Which are the well-known unit vectors in cylindrical coordinates. 

The basis vectors on arbitrary coordinates can be found by performing a 
differentiation of the vector with respect to the coordinate being changed: 

𝐞𝐞𝑢𝑢𝑖𝑖 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝑢𝑢𝑖𝑖

 

 

We define the scale factors ℎ𝑖𝑖 = ‖𝐞𝐞𝑢𝑢𝑖𝑖‖ 

Such that the unit vectors: 𝐞𝐞�𝑢𝑢𝑖𝑖 = 1
ℎ𝑖𝑖

𝜕𝜕𝐫𝐫
𝜕𝜕𝑢𝑢𝑖𝑖
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10) Derive the unit-vector basis in spherical coordinates, and the scale factors: 

�
𝑥𝑥 = 𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙
𝑦𝑦 = 𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙
𝑧𝑧 = 𝑟𝑟 cos𝜃𝜃

 

Solution: The basis vectors are defined in terms of the following vectors: 

𝐞𝐞𝑟𝑟 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝑟𝑟

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝑟𝑟

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝑟𝑟

,
𝜕𝜕𝑧𝑧
𝜕𝜕𝑟𝑟
� = (sin𝜃𝜃 cos𝜙𝜙 , sin𝜃𝜃 sin𝜙𝜙 , cos𝜃𝜃) 

𝐞𝐞𝜃𝜃 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝜃𝜃

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜃𝜃

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝜃𝜃

,
𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃
� = (𝑟𝑟 cos𝜙𝜙 cos𝜃𝜃 , 𝑟𝑟 sin𝜙𝜙 cos𝜃𝜃 ,−𝑟𝑟 sin𝜃𝜃) 

𝐞𝐞𝜙𝜙 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝜙𝜙

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

,
𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

� = (−𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙 , 𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙 , 0) 

We can find the amplitude of these vectors: 

ℎ𝑟𝑟 = |𝐞𝐞𝑟𝑟| = �(sin𝜃𝜃 cos𝜙𝜙)2 + (sin𝜃𝜃 sin𝜙𝜙)2 + (cos𝜃𝜃)2 = 1 

ℎ𝜃𝜃 = |𝐞𝐞𝜃𝜃| = �(𝑟𝑟 cos𝜙𝜙 cos𝜃𝜃)2 + (𝑟𝑟 sin𝜙𝜙 cos𝜃𝜃)2 + (𝑟𝑟 sin𝜃𝜃)2 = 𝑟𝑟 

ℎ𝜙𝜙 = �𝐞𝐞𝜙𝜙� = �(𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙)2 + (𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙)2 = 𝑟𝑟 sin𝜃𝜃 

So, we can obtain the unit vectors by normalizing: 

𝐞𝐞�𝜕𝜕 = 𝐞𝐞𝜕𝜕 = (cos𝜙𝜙 , sin𝜙𝜙 , 0) 

𝐞𝐞�𝜃𝜃 =
𝐞𝐞𝜃𝜃
𝑟𝑟

= (cos𝜙𝜙 cos𝜃𝜃 , sin𝜙𝜙 cos𝜃𝜃 ,− sin𝜃𝜃) 

𝐞𝐞�𝜙𝜙 =
𝐞𝐞𝜙𝜙

𝑟𝑟 sin𝜃𝜃
= (sin𝜙𝜙 , cos𝜙𝜙 , 0) 

Note that the scale factors are useful when defining an infinitesimal vector displacement in general 
curvilinear coordinates, in terms of their unit vectors (use the definition of total differential on 𝐫𝐫): 

d𝐫𝐫 =
∂𝐫𝐫
𝜕𝜕𝑢𝑢1

d𝑢𝑢1 +
∂𝐫𝐫
𝜕𝜕𝑢𝑢2

d𝑢𝑢2 + ⋯+
∂𝐫𝐫
𝜕𝜕𝑢𝑢𝑀𝑀

d𝑢𝑢𝑀𝑀 

      = 𝐞𝐞1d𝑢𝑢1 + 𝐞𝐞2d𝑢𝑢2 +⋯+ 𝐞𝐞𝑀𝑀d𝑢𝑢𝑀𝑀 
      = ℎ1d𝑢𝑢1𝐞𝐞�1 + ℎ2d𝑢𝑢2𝐞𝐞�2 + ⋯+ ℎ𝑀𝑀d𝑢𝑢𝑀𝑀𝐞𝐞�𝑀𝑀 

This will be useful in the chapter on multiple integration: 

Coordinate System Scale Factors Infinitesimal vector displacement 

Cartesian (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 
ℎ𝑥𝑥 = 1; 
ℎ𝑦𝑦 = 1; 
ℎ𝑧𝑧 = 1 

d𝐫𝐫 = d𝑥𝑥 𝐱𝐱� + d𝑦𝑦 𝐲𝐲� + d𝑧𝑧 𝐳𝐳� 

Cylindrical (𝜌𝜌,𝜙𝜙, 𝑧𝑧) 
ℎ𝜕𝜕 = 1; 
ℎ𝜙𝜙 = 𝜌𝜌; 
ℎ𝑧𝑧 = 1 

d𝐫𝐫 = d𝜌𝜌 𝐞𝐞�𝜕𝜕 + 𝜌𝜌 d𝜙𝜙 𝐞𝐞�𝜙𝜙 + d𝑧𝑧 𝐞𝐞�𝑧𝑧 

Spherical (𝑟𝑟,𝜃𝜃,𝜙𝜙) 
ℎ𝑟𝑟 = 1; 
ℎ𝜃𝜃 = 𝑟𝑟; 

ℎ𝜙𝜙 = 𝑟𝑟 sin𝜃𝜃 
d𝐫𝐫 = d𝑟𝑟 𝐞𝐞�𝑟𝑟 + 𝑟𝑟 d𝜃𝜃 𝐞𝐞�𝜃𝜃 + 𝑟𝑟 sin𝜃𝜃 d𝜙𝜙 𝐞𝐞�𝜙𝜙 
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PROBLEMS: 

11) Find all first and second partial derivatives of the function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 2𝑥𝑥𝑒𝑒𝑦𝑦 + 𝑦𝑦𝑥𝑥 

First order: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 2𝑒𝑒𝑦𝑦 + 𝑦𝑦                     
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 2𝑥𝑥𝑒𝑒𝑦𝑦 + 𝑥𝑥 

Second order: 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 0                     

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

=
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� = 2𝑥𝑥𝑒𝑒𝑦𝑦 

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� = 2𝑒𝑒𝑦𝑦 + 1     

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 2𝑒𝑒𝑦𝑦 + 1        

 

12) Find the total differential d𝑓𝑓 of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = sin(𝑥𝑥2𝑦𝑦).  

d𝑓𝑓 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦 

The partial derivatives are: 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 2𝑥𝑥𝑦𝑦 cos(𝑥𝑥2𝑦𝑦) and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 𝑥𝑥2 cos(𝑥𝑥2𝑦𝑦). Therefore: 

d𝑓𝑓 = 2𝑥𝑥𝑦𝑦 cos(𝑥𝑥2𝑦𝑦) d𝑥𝑥 + 𝑥𝑥2 cos(𝑥𝑥2𝑦𝑦) d𝑦𝑦 

 

13) Find and classify the stationary points of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 1 − 2𝑥𝑥 + 𝑥𝑥2 + 𝑦𝑦2 
First order partial derivatives must be zero at stationary points: 

𝑓𝑓𝑥𝑥 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= −2 + 2𝑥𝑥 = 0  

 𝑓𝑓𝑦𝑦 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 2𝑦𝑦 = 0 

From the first equation, the solution is 𝑥𝑥 = 1. From the second equation, the solution is 𝑦𝑦 = 0. Both 
are simultaneously zero at the point (𝑥𝑥,𝑦𝑦) = (1,0). 

Now, let’s classify the stationary point. The second order partial derivatives are: 

𝑓𝑓𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 2                     𝑓𝑓𝑦𝑦𝑦𝑦 =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

=
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� = 2 

𝑓𝑓𝑥𝑥𝑦𝑦 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 0        

To classify the stationary points, we need to look at the sign of the second order correction.  

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) = 1
2
�𝑓𝑓𝑥𝑥𝑥𝑥(Δ𝑥𝑥)2 + 𝑓𝑓𝑦𝑦𝑦𝑦(Δ𝑦𝑦)2 + 2𝑓𝑓𝑥𝑥𝑦𝑦(Δ𝑥𝑥Δ𝑦𝑦)�      (Eq. 1) 

Which, with some algebra, can be rearranged into the following form (given in the exam): 

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) =
1
2 �
𝑓𝑓𝑥𝑥𝑥𝑥 �Δ𝑥𝑥 +

𝑓𝑓𝑥𝑥𝑦𝑦
𝑓𝑓𝑥𝑥𝑥𝑥

Δ𝑦𝑦�
2

+ �
𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2

𝑓𝑓𝑥𝑥𝑥𝑥
� (Δ𝑦𝑦)2� 
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Looking at the sign of the non-squared terms, we can arrive at the conditions used to classify the 
stationary point: 

• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 < 0 ⟹ Saddle point (easy case: if 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 have opposite sign) 
• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 > 0 ⟹ Maximum or minimum: 
         Both 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 are positive ⟹ Local minima 
         Both 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 are negative ⟹ Local maxima 
• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 = 0 ⟹ Undetermined. There is a direction where the function is flat to second 

order. Further investigation (higher order Taylor) is required. 
 
At (𝑥𝑥,𝑦𝑦) = (1,0) we have 𝑓𝑓𝑥𝑥𝑥𝑥 = 2, 𝑓𝑓𝑦𝑦𝑦𝑦 = 2 and 𝑓𝑓𝑥𝑥𝑦𝑦 = 0. Therefore, 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 = 4 − 0 > 0, so it is 
a maximum or minimum. Since 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 > 0, it is a local minimum. 
 

14) Find and classify the stationary points of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑦𝑦2 + 𝑦𝑦 − 𝑥𝑥 
First order partial derivatives must be zero at stationary points: 

𝑓𝑓𝑥𝑥 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑦𝑦2 − 1 = 0                     𝑓𝑓𝑦𝑦 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 2𝑥𝑥𝑦𝑦 + 1 = 0 

From the first equation we get 𝑦𝑦 = ±1, and substituting it into the second, we get: 

For 𝑦𝑦 = 1 →     2𝑥𝑥 + 1 = 0  →    𝑥𝑥 = −1
2
 

For 𝑦𝑦 = −1 →     −2𝑥𝑥 + 1 = 0  →    𝑥𝑥 = 1
2
 

So, the two stationary points are: (𝑥𝑥,𝑦𝑦) = (−1
2

, 1) and (1
2

,−1). 

Now, let’s classify them: 

The second order partial derivatives are: 

𝑓𝑓𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 0                     𝑓𝑓𝑦𝑦𝑦𝑦 =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

=
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� = 2𝑥𝑥𝑒𝑒𝑦𝑦 

𝑓𝑓𝑥𝑥𝑦𝑦 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 2𝑒𝑒𝑦𝑦 + 1        

To classify the stationary points, we need to look at the sign of the second order correction.  

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) = 1
2
�𝑓𝑓𝑥𝑥𝑥𝑥(Δ𝑥𝑥)2 + 𝑓𝑓𝑦𝑦𝑦𝑦(Δ𝑦𝑦)2 + 2𝑓𝑓𝑥𝑥𝑦𝑦(Δ𝑥𝑥Δ𝑦𝑦)�      (Eq. 1) 

Which, with some algebra, can be rearranged into the following form (given in the exam): 

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) =
1
2 �
𝑓𝑓𝑥𝑥𝑥𝑥 �Δ𝑥𝑥 +

𝑓𝑓𝑥𝑥𝑦𝑦
𝑓𝑓𝑥𝑥𝑥𝑥

Δ𝑦𝑦�
2

+ �
𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2

𝑓𝑓𝑥𝑥𝑥𝑥
� (Δ𝑦𝑦)2� 

This problem introduces a minor setback, because here we have 𝑓𝑓𝑥𝑥𝑥𝑥 = 0 which means that this 
rearranged form has undetermined terms. We can however reason as follows: By looking at the 
original form of Δ(2)𝑓𝑓 (Eq. 1), we see that it is completely symmetric in 𝑓𝑓𝑥𝑥𝑥𝑥 and in 𝑓𝑓𝑦𝑦𝑦𝑦, therefore, we 
can deduce that an equivalent rearranged form can be arrived at by switching the roles of 𝑥𝑥 and 𝑦𝑦, as 
follows:  
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Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) =
1
2 �
𝑓𝑓𝑦𝑦𝑦𝑦 �Δ𝑦𝑦 +

𝑓𝑓𝑥𝑥𝑦𝑦
𝑓𝑓𝑦𝑦𝑦𝑦

Δ𝑥𝑥�
2

+ �
𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2

𝑓𝑓𝑦𝑦𝑦𝑦
� (Δ𝑥𝑥)2� 

Which is now well defined. Looking at the sign of the non-squared terms, we can arrive exactly at the 
same conditions that we have previously used. In fact, the conditions are valid in general. 

• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 < 0 ⟹ Saddle point (easy case: if 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 have opposite sign) 
• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 > 0 ⟹ Maximum or minimum: 
         Both 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 are positive ⟹ Local minima 
         Both 𝑓𝑓𝑥𝑥𝑥𝑥 and 𝑓𝑓𝑦𝑦𝑦𝑦 are negative ⟹ Local maxima 
• 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 = 0 ⟹ Undetermined. There is a direction where the function is flat to second 

order. Further investigation (higher order Taylor) is required. 
 
At (𝑥𝑥,𝑦𝑦) = (−1

2
, 1) we have 𝑓𝑓𝑥𝑥𝑥𝑥 = 0, 𝑓𝑓𝑦𝑦𝑦𝑦 = −𝑒𝑒 and 𝑓𝑓𝑥𝑥𝑦𝑦 = 2𝑒𝑒 + 1.  

       𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 = 0 − (2𝑒𝑒 + 1) < 0, therefore, it is a saddle point. 

At (𝑥𝑥,𝑦𝑦) = (1
2

,−1) we have 𝑓𝑓𝑥𝑥𝑥𝑥 = 0, 𝑓𝑓𝑦𝑦𝑦𝑦 = 𝑒𝑒−1 and 𝑓𝑓𝑥𝑥𝑦𝑦 = 2𝑒𝑒−1 + 1.  
       𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 = 0 − (2𝑒𝑒−1 + 1) < 0, therefore, it is also a saddle point. 

 

 

15) Find and classify the stationary points of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑦𝑦 + 𝑒𝑒𝑥𝑥𝑦𝑦 
First order partial derivatives must be zero at stationary points: 

𝑓𝑓𝑥𝑥 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 𝑦𝑦(1 + 𝑒𝑒𝑥𝑥𝑦𝑦) = 0                     𝑓𝑓𝑦𝑦 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= 𝑥𝑥(1 + 𝑒𝑒𝑥𝑥𝑦𝑦) = 0 

From the first equation we get 𝑦𝑦 = 0, and substituting it into the second, we get 𝑥𝑥 = 0: 

So the only stationary points is: (𝑥𝑥,𝑦𝑦) = (0,0) 
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Now, let’s classify it: 

The second order partial derivatives are: 

𝑓𝑓𝑥𝑥𝑥𝑥 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥2

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 𝑒𝑒𝑥𝑥𝑦𝑦𝑦𝑦2                     𝑓𝑓𝑦𝑦𝑦𝑦 =

𝜕𝜕2𝑓𝑓
𝜕𝜕𝑦𝑦2

=
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� = 𝑒𝑒𝑥𝑥𝑦𝑦𝑥𝑥2 

𝑓𝑓𝑥𝑥𝑦𝑦 =
𝜕𝜕2𝑓𝑓
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� =

𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥
� = 1 + 𝑒𝑒𝑥𝑥𝑦𝑦(1 + 𝑥𝑥𝑦𝑦)        

At the stationary point (𝑥𝑥,𝑦𝑦) = (0,0) these take the values: 

𝑓𝑓𝑥𝑥𝑥𝑥 = 0,    𝑓𝑓𝑦𝑦𝑦𝑦 = 0,     𝑓𝑓𝑥𝑥𝑦𝑦 = 2 

To classify the stationary points, we need to look at the sign of the second order correction in all 
directions. 

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) = 1
2
�𝑓𝑓𝑥𝑥𝑥𝑥(Δ𝑥𝑥)2 + 𝑓𝑓𝑦𝑦𝑦𝑦(Δ𝑦𝑦)2 + 2𝑓𝑓𝑥𝑥𝑦𝑦(Δ𝑥𝑥Δ𝑦𝑦)�      (Eq. 1) 

In this case we don’t need to do work with any rearranged term, because we have 𝑓𝑓𝑥𝑥𝑥𝑥 = 𝑓𝑓𝑦𝑦𝑦𝑦 = 0 
which leaves: 

Δ(2)𝑓𝑓(Δ𝑥𝑥,Δ𝑦𝑦) = 2Δ𝑥𝑥Δ𝑦𝑦 

Clearly, the sign of the second order correction term depends on the signs of Δ𝑥𝑥Δ𝑦𝑦, and so it is positive 
or negative along different directions, so this is a saddle point. 

We could also have checked the usual condition: 𝑓𝑓𝑥𝑥𝑥𝑥𝑓𝑓𝑦𝑦𝑦𝑦 − 𝑓𝑓𝑥𝑥𝑦𝑦2 < 0 ⟹ Saddle point 

 

16) Given that 𝑥𝑥(𝑢𝑢) = 𝑎𝑎𝑢𝑢2 and 𝑦𝑦(𝑢𝑢) = 𝑏𝑏𝑢𝑢−2, find the rate of change of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2𝑒𝑒−𝑦𝑦 with 
respect to 𝑢𝑢. 

Solution: The partial derivatives of 𝑓𝑓 are given by: 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 2𝑥𝑥𝑒𝑒−𝑦𝑦 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= −𝑥𝑥2𝑒𝑒−𝑦𝑦. The derivatives of 

𝑥𝑥 and 𝑦𝑦 are: d𝑥𝑥
d𝑢𝑢

= 2𝑎𝑎𝑢𝑢 and d𝑦𝑦
d𝑢𝑢

= −2𝑏𝑏𝑢𝑢−3  The chain rule therefore gives us the total derivative: 

d𝑓𝑓
d𝑢𝑢

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥
d𝑢𝑢

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑢𝑢

= (2𝑥𝑥𝑒𝑒−𝑦𝑦)(2𝑎𝑎𝑢𝑢) + (−𝑥𝑥2𝑒𝑒−𝑦𝑦)(−2𝑏𝑏𝑢𝑢−3) 

Which after substituting 𝑥𝑥 = 𝑎𝑎𝑢𝑢2 and 𝑦𝑦 = 𝑏𝑏𝑢𝑢−2 gives: 

d𝑓𝑓
d𝑢𝑢

= �2𝑎𝑎𝑢𝑢2𝑒𝑒−𝑏𝑏𝑢𝑢−2�(2𝑎𝑎𝑢𝑢) + �−𝑎𝑎2𝑢𝑢4𝑒𝑒−𝑏𝑏𝑢𝑢−2�(−2𝑏𝑏𝑢𝑢−3) 

= 4𝑎𝑎2𝑢𝑢3𝑒𝑒−𝑏𝑏𝑢𝑢−2 + 2𝑎𝑎2𝑏𝑏𝑢𝑢𝑒𝑒−𝑏𝑏𝑢𝑢−2  
= 2𝑎𝑎2𝑢𝑢𝑒𝑒−𝑏𝑏𝑢𝑢−2(2𝑢𝑢2 + 𝑏𝑏) 

Note that we could have solved this exercise by brute force, directly obtaining 𝑓𝑓(𝑢𝑢) =
𝑓𝑓�𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢)� = (𝑎𝑎𝑢𝑢2)2𝑒𝑒−�𝑏𝑏𝑢𝑢−2� and finding the derivative d𝑓𝑓/d𝑢𝑢. 
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17) Find the total derivative of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + ln(𝑥𝑥𝑦𝑦) with respect to 𝑥𝑥 given that 𝑦𝑦 = 𝑒𝑒𝑥𝑥 + 𝑥𝑥2 

Solution: The chain rule gives us: 

d𝑓𝑓
d𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑥𝑥

     �or, we could use 
d𝑓𝑓
d𝑠𝑠

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

d𝑥𝑥
d𝑠𝑠

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑠𝑠

 with 𝑥𝑥 = 𝑠𝑠� 

On one hand, we need to find d𝑦𝑦
d𝑥𝑥

 

d𝑦𝑦
d𝑥𝑥

= 𝑒𝑒𝑥𝑥 + 2𝑥𝑥 

On the other hand, we need to find the partial derivatives of 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + ln(𝑥𝑥𝑦𝑦), calculated always 
assuming that the other variable is constant, without worrying for the fact that 𝑦𝑦 changes with 𝑥𝑥. 

Remember the derivative of ln(𝑢𝑢(𝑥𝑥)) is as follows: d
d𝑥𝑥

(ln𝑢𝑢(𝑥𝑥)) = d𝜕𝜕
d𝑢𝑢

d𝑢𝑢
d𝑥𝑥

= 𝑢𝑢′(𝑥𝑥)
𝑢𝑢(𝑥𝑥)

 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= 2𝑥𝑥 +
1
𝑥𝑥

        
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

=
1
𝑦𝑦

 

Therefore, the chain rule tells us: 

d𝑓𝑓
d𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑥𝑥

= �2𝑥𝑥 +
1
𝑥𝑥
� + �

1
𝑦𝑦
� (𝑒𝑒𝑥𝑥 + 2𝑥𝑥) 

We can now substitute 𝑦𝑦 = 𝑒𝑒𝑥𝑥 + 𝑥𝑥2 to get: 

d𝑓𝑓
d𝑥𝑥

= 2𝑥𝑥 +
1
𝑥𝑥

+
𝑒𝑒𝑥𝑥 + 2𝑥𝑥
𝑒𝑒𝑥𝑥 + 𝑥𝑥2

 

 

18) Consider the function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 + 𝑒𝑒𝑥𝑥𝑦𝑦 and the change of variables: 

�
𝑢𝑢 = 𝑥𝑥 + 𝑦𝑦
𝑣𝑣 = 𝑥𝑥 − 𝑦𝑦 

Find 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

. 

Solution: We apply the chain rule (generalised version) to find 𝜕𝜕𝜕𝜕
𝜕𝜕𝑢𝑢

: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

 

Before we start finding the partial derivatives, we need to know the “inverted” change of variables 
(i.e. 𝑥𝑥 and 𝑦𝑦 in terms of 𝑢𝑢 and 𝑣𝑣). We can figure it out by solving the simultaneous equations for 𝑥𝑥 and 
𝑦𝑦 as follows: 

�𝑥𝑥 = (𝑢𝑢 + 𝑣𝑣)/2
𝑦𝑦 = (𝑢𝑢 − 𝑣𝑣)/2 

Therefore, we can now calculate: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

= (2𝑥𝑥 + 𝑦𝑦𝑒𝑒𝑥𝑥𝑦𝑦) �
1
2
� + (𝑥𝑥𝑒𝑒𝑥𝑥𝑦𝑦) �

1
2
� = 𝑥𝑥 +

(𝑥𝑥 + 𝑦𝑦)
2

𝑒𝑒𝑥𝑥𝑦𝑦 

And substituting 𝑥𝑥 = (𝑢𝑢 + 𝑣𝑣)/2 and 𝑦𝑦 = (𝑢𝑢 − 𝑣𝑣)/2 we get: 
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𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢

=
𝑢𝑢 + 𝑣𝑣

2
+
𝑢𝑢
2
𝑒𝑒
𝑢𝑢2−𝜕𝜕2
4  

Next, we do the same for  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑣𝑣

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

= (2𝑥𝑥 + 𝑦𝑦𝑒𝑒𝑥𝑥𝑦𝑦) �
1
2
� + (𝑥𝑥𝑒𝑒𝑥𝑥𝑦𝑦) �−

1
2
� = 𝑥𝑥 +

(𝑦𝑦 − 𝑥𝑥)
2

𝑒𝑒𝑥𝑥𝑦𝑦 

And substituting 𝑥𝑥 = (𝑢𝑢 + 𝑣𝑣)/2 and 𝑦𝑦 = (𝑢𝑢 − 𝑣𝑣)/2 we get: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑢𝑢

=
𝑢𝑢 + 𝑣𝑣

2
−
𝑣𝑣
2
𝑒𝑒
𝑢𝑢2−𝜕𝜕2
4  

As usual with these problems, this could have also been solved by brute force, substituting 𝑥𝑥 and 𝑦𝑦 as 
functions of 𝑢𝑢 and 𝑣𝑣 in the full expression of 𝑓𝑓(𝑥𝑥,𝑦𝑦) and then finding the partial derivatives directly. 

 

19) Consider the following change of coordinates (𝑥𝑥,𝑦𝑦) to (𝑢𝑢, 𝑣𝑣): 

�
𝑢𝑢 = 𝑥𝑥 + 𝑦𝑦
𝑣𝑣 = 𝑥𝑥 − 𝑦𝑦 

Find the unit vectors associated to the new coordinates, 𝐞𝐞�𝑢𝑢 and 𝐞𝐞�𝜕𝜕. 

We need the conversion from (𝑢𝑢, 𝑣𝑣) to (𝑥𝑥,𝑦𝑦), which can be obtained by solving the simultaneous 
equations for 𝑥𝑥 and 𝑦𝑦: 

�𝑥𝑥 = (𝑢𝑢 + 𝑣𝑣)/2
𝑦𝑦 = (𝑢𝑢 − 𝑣𝑣)/2 

The unit vectors are given by how the position vector 𝐫𝐫 = 𝑥𝑥𝐱𝐱� + 𝑦𝑦𝐲𝐲� changes when we change the 
coordinates 𝑢𝑢 and 𝑣𝑣: 

𝐞𝐞𝑢𝑢 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝑢𝑢

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢
� = �

1
2

,
1
2
� 

𝐞𝐞𝜕𝜕 =
𝜕𝜕𝐫𝐫
𝜕𝜕𝑣𝑣

= �
𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

,
𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣
� = �

1
2

,−
1
2
� 

Dividing by their norm we can obtain the corresponding unit vectors: 

𝐞𝐞�𝑢𝑢 =
𝐞𝐞𝑢𝑢
‖𝐞𝐞𝑢𝑢‖

=
1
√2

(1,1) 

𝐞𝐞�𝜕𝜕 =
𝐞𝐞𝑢𝑢
‖𝐞𝐞𝜕𝜕‖

=
1
√2

(1,−1) 

Note that this change of coordinates corresponds to a rotated (and scaled) rectangular grid. 
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20) Consider the vector function of two variables: 

𝐅𝐅(𝑥𝑥,𝑦𝑦) = (𝑥𝑥𝑦𝑦2 + 𝑦𝑦 − 𝑥𝑥)𝐱𝐱� + (𝑥𝑥𝑦𝑦 + 𝑒𝑒𝑥𝑥𝑦𝑦)𝐲𝐲� 

Find the linear function 𝐋𝐋(𝑥𝑥,𝑦𝑦) which best approximates 𝐅𝐅(𝑥𝑥,𝑦𝑦) at the point (𝑥𝑥0,𝑦𝑦0) = (0,1). 

Solution: 𝐅𝐅(𝑥𝑥,𝑦𝑦) is a function with two inputs and two outputs. To find the best linear approximation, 
we can use the Jacobian matrix. The best linear approximation is given by: 

𝐋𝐋(𝑥𝑥0 + Δ𝑥𝑥,𝑦𝑦0 + Δ𝑦𝑦) = 𝐅𝐅(𝑥𝑥0,𝑦𝑦0) + 𝐉𝐉(𝑥𝑥0,𝑦𝑦0) Δ𝐫𝐫 

The Jacobian matrix is: 

𝐉𝐉(𝑥𝑥,𝑦𝑦) =

⎝

⎜
⎛
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑦𝑦 ⎠

⎟
⎞

= � 𝑦𝑦2 − 1 2𝑥𝑥𝑦𝑦 + 1
𝑦𝑦 + 𝑦𝑦𝑒𝑒𝑥𝑥𝑦𝑦 𝑥𝑥 + 𝑥𝑥𝑒𝑒𝑥𝑥𝑦𝑦� 

Therefore, we know that the best linear approximation at every point is given by: 

𝐋𝐋(𝑥𝑥0 + Δ𝑥𝑥,𝑦𝑦0 + Δ𝑦𝑦) = �𝑥𝑥0𝑦𝑦0
2 + 𝑦𝑦0 − 𝑥𝑥0

𝑥𝑥0𝑦𝑦0 + 𝑒𝑒𝑥𝑥0𝑦𝑦0 � + � 𝑦𝑦02 − 1 2𝑥𝑥0𝑦𝑦0 + 1
𝑦𝑦0 + 𝑦𝑦0𝑒𝑒𝑥𝑥0𝑦𝑦0 𝑥𝑥0 + 𝑥𝑥0𝑒𝑒𝑥𝑥0𝑦𝑦0

� �Δ𝑥𝑥Δ𝑦𝑦� 

If we compute this linear function at the point (𝑥𝑥0,𝑦𝑦0) = (0,1) we get: 

𝐋𝐋(Δ𝑥𝑥, 1 + Δ𝑦𝑦) = �1
1� + �0 1

2 0� �
Δ𝑥𝑥
Δ𝑦𝑦� = � 1 + Δ𝑦𝑦

1 + 2Δ𝑥𝑥� 

We are asked for 𝐋𝐋(𝑥𝑥, 𝑦𝑦) written as a function of 𝑥𝑥 and 𝑦𝑦 instead of Δ𝑥𝑥 and Δ𝑦𝑦, so we can simply 
substitute Δ𝑥𝑥 = 𝑥𝑥 − 𝑥𝑥0 = 𝑥𝑥 and Δ𝑦𝑦 = 𝑦𝑦 − 𝑦𝑦0 = 𝑦𝑦 − 1, and finally arrive at the linear function: 

𝐋𝐋(𝑥𝑥,𝑦𝑦) = � 𝑦𝑦
1 + 2𝑥𝑥� = 𝑦𝑦𝐱𝐱� + (1 + 2𝑥𝑥)𝐲𝐲� 

Which is, indeed, the best linear approximation to 𝐅𝐅(𝑥𝑥,𝑦𝑦) near the point (0,1). 
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21)  Prove that 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

 for any function 𝑓𝑓(𝑟𝑟,𝜃𝜃,𝜙𝜙) can be written using only spherical coordinates 
and partial derivatives with respect to spherical coordinates as: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= sin𝜃𝜃 cos𝜙𝜙
𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

+
cos𝜙𝜙 cos𝜃𝜃

𝑟𝑟
𝜕𝜕𝑓𝑓
𝜕𝜕𝜃𝜃

−
sin𝜙𝜙
𝑟𝑟 sin𝜃𝜃

𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= cos𝜃𝜃
𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

−
sin𝜃𝜃
𝑟𝑟

𝜕𝜕𝑓𝑓
𝜕𝜕𝜃𝜃

 

Hint: spherical coordinate transformation: 

�
 𝑥𝑥 = 𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙
 𝑦𝑦 = 𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙
 𝑧𝑧 = 𝑟𝑟 cos𝜃𝜃

          and      

⎩
⎪
⎨

⎪
⎧

 

𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2        

𝜃𝜃 = tan−1 ��𝑥𝑥
2+𝑦𝑦2

𝑧𝑧
�      

𝜙𝜙 = tan−1 �𝑦𝑦
𝑥𝑥
�                

 

Hint: remember the derivative d
d𝑥𝑥

tan−1 𝑢𝑢(𝑥𝑥) = 𝑢𝑢′(𝑥𝑥)
𝑢𝑢2(𝑥𝑥)+1

 

 

Solution: 

For 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

, we apply the generalized chain rule: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

 

The required partial derivatives are: 

𝜕𝜕𝑟𝑟
𝜕𝜕𝑥𝑥

=
1
2

2𝑥𝑥

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
=

𝑥𝑥

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
=
𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙

𝑟𝑟
= sin𝜃𝜃 cos𝜙𝜙 

 

𝜕𝜕𝜃𝜃
𝜕𝜕𝑥𝑥

=

𝜕𝜕
𝜕𝜕𝑥𝑥 �

�𝑥𝑥2 + 𝑦𝑦2
𝑧𝑧 �

��
𝑥𝑥2 + 𝑦𝑦2
𝑧𝑧 �

2

+ 1

=

1
𝑧𝑧

1
2

2𝑥𝑥
�𝑥𝑥2 + 𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
𝑧𝑧2

=
𝑥𝑥 𝑧𝑧

�𝑥𝑥2 + 𝑦𝑦2 (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2)
 

=
𝑟𝑟2 sin𝜃𝜃 cos𝜙𝜙 cos𝜃𝜃

�𝑟𝑟2(sin2 𝜃𝜃 cos2 𝜙𝜙 + sin2 𝜃𝜃 sin2 𝜙𝜙)
1
𝑟𝑟2

=
sin𝜃𝜃 cos𝜙𝜙  cos𝜃𝜃

𝑟𝑟 sin𝜃𝜃
=

cos𝜙𝜙 cos𝜃𝜃
𝑟𝑟

 

 

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

=
𝜕𝜕
𝜕𝜕𝑥𝑥 �

𝑦𝑦
𝑥𝑥�

�𝑦𝑦𝑥𝑥�
2

+ 1
=

−𝑦𝑦/𝑥𝑥2

𝑥𝑥2 + 𝑦𝑦2
𝑥𝑥2

=
−𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2
 

=
−𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙

𝑟𝑟2(sin2 𝜃𝜃 cos2 𝜙𝜙 + sin2 𝜃𝜃 sin2 𝜙𝜙) =
−𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙
𝑟𝑟2 sin2 𝜃𝜃

= −
sin𝜙𝜙
𝑟𝑟 sin𝜃𝜃

 

Therefore, 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= (sin𝜃𝜃 cos𝜙𝜙)
𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

+ �
cos𝜙𝜙 cos𝜃𝜃

𝑟𝑟
�
𝜕𝜕𝑓𝑓
𝜕𝜕𝜃𝜃

− �
sin𝜙𝜙
𝑟𝑟 sin𝜃𝜃

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙
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For 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

, we apply the generalized chain rule: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

𝜕𝜕𝑟𝑟
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜃𝜃

𝜕𝜕𝜃𝜃
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑓𝑓
𝜕𝜕𝜙𝜙

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

 

The required partial derivatives are: 

𝜕𝜕𝑟𝑟
𝜕𝜕𝑧𝑧

=
1
2

2𝑧𝑧

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
=

𝑧𝑧

�𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2
=
𝑟𝑟 cos𝜃𝜃
𝑟𝑟

= cos𝜃𝜃 

 

𝜕𝜕𝜃𝜃
𝜕𝜕𝑧𝑧

=

𝜕𝜕
𝜕𝜕𝑧𝑧 �

�𝑥𝑥2 + 𝑦𝑦2
𝑧𝑧 �

��
𝑥𝑥2 + 𝑦𝑦2
𝑧𝑧 �

2

+ 1

=
−�𝑥𝑥2 + 𝑦𝑦2 1

𝑧𝑧2
𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2

𝑧𝑧2
=

−�𝑥𝑥2 + 𝑦𝑦2

 (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2) 

= −
�𝑟𝑟2(sin2 𝜃𝜃 cos2 𝜙𝜙 + sin2 𝜃𝜃 sin2 𝜙𝜙)

𝑟𝑟2
= −

𝑟𝑟 sin𝜃𝜃
𝑟𝑟2

= −
sin𝜃𝜃
𝑟𝑟

 

 

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

=
𝜕𝜕
𝜕𝜕𝑧𝑧 �

𝑦𝑦
𝑥𝑥�

�𝑦𝑦𝑥𝑥�
2

+ 1
= 0 

Therefore: 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= (cos𝜃𝜃)
𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

− �
sin𝜃𝜃
𝑟𝑟

�
𝜕𝜕𝑓𝑓
𝜕𝜕𝜃𝜃

 

 

This seemingly ugly expression makes intuitive sense if you think about it. It tells you how much the 
function changes along 𝑧𝑧 as a function of how much it changes along 𝑟𝑟 and 𝜃𝜃.  

For example, if 𝜃𝜃 = 𝜋𝜋
2

, we are in the XY plane, and then 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 0 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
− �1

𝑟𝑟
� 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

. Indeed, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

 is irrelevant to 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

 when we are in the XY plane, while 𝜕𝜕𝜕𝜕
𝜕𝜕𝜃𝜃

 will contribute less to 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

 the bigger the radius is, and with a 
negative sign because an increase in 𝜃𝜃 will be a decrease in 𝑧𝑧. 

On the contrary, if we are in the z-axis, with 𝜃𝜃 = 0, then we have 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟
− 0 𝜕𝜕𝜕𝜕

𝜕𝜕𝜃𝜃
. Indeed, when we 

are in the 𝑧𝑧-axis, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

 must be the same thing as 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

, because in the 𝑧𝑧-axis the distance to the origin is 
exactly the 𝑧𝑧-coordinate directly. 
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4. MULTIPLE INTEGRATION 

4.1 INTRODUCTION TO MULTIPLE INTEGRALS 

We now focus on integration when a function has 𝑁𝑁 variables as the input: interesting! 

 

A. REVISION OF DEFINITE INTEGRALS 

A definite integral gives us the area of the graph of a function 𝑓𝑓(𝑥𝑥) between 𝑥𝑥 = 𝑎𝑎 and 𝑥𝑥 = 𝑏𝑏: 

𝐼𝐼 = � 𝑓𝑓(𝑥𝑥)d𝑥𝑥
𝑏𝑏

𝑎𝑎
= limΔ𝑥𝑥→0  ��Δ𝑥𝑥 ⋅ 𝑓𝑓(𝑥𝑥𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

� 

It is the limit of a sum when the interval [𝑎𝑎, 𝑏𝑏] is divided by vertical lines into 𝑁𝑁 stripes of the same 
width and of a height given by the value of the function inside the integral (called the integrand) at 
any point 𝑥𝑥𝑖𝑖  within the stripe. 

Important: after doing the integral, the variable being integrated disappears from the result: 

𝐼𝐼(𝑦𝑦, 𝑧𝑧) = � 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)d𝑥𝑥
𝑏𝑏

𝑎𝑎
 

However, if the upper limit of the integral is considered as a variable 𝑥𝑥, then the result of the integral 
depends on 𝑥𝑥 (after all, it is describing the area of 𝑓𝑓(𝑥𝑥′) as a function of the upper limit) and therefore 
results in a function of 𝑥𝑥: 

𝐹𝐹(𝑥𝑥) = � 𝑓𝑓(𝑥𝑥′)d𝑥𝑥′
𝑥𝑥

𝑎𝑎
 

It is always a good idea to use a different variable name inside the integral (𝑥𝑥′), to formally distinguish 
it from the variable in the limit (𝑥𝑥), on which the result depends. If we differentiate this function 𝐹𝐹(𝑥𝑥), 
we recover the function inside the integral again. This result is called The Fundamental Theorem of 
Calculus: 

d𝐹𝐹(𝑥𝑥)
d𝑥𝑥

=
d

d𝑥𝑥
�� 𝑓𝑓(𝑥𝑥′)d𝑥𝑥′

𝑥𝑥

𝑎𝑎
� = 𝑓𝑓(𝑥𝑥) 

It tells us that integration is inverse to differentiation. This allows us to calculate integrals by finding 
an antiderivative (i.e. a function whose derivative is the integrand). 
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B. INTRODUCTION TO DOUBLE INTEGRALS 

Double integrals can be done to functions which depend on at least two variables 𝑓𝑓(𝑥𝑥, 𝑦𝑦). Double 
integrals represent the volume under a graph of the function, limited to a certain area 𝐴𝐴 in the two-
dimensional space of the variables (𝑥𝑥, 𝑦𝑦). 

𝑉𝑉 = �𝑓𝑓(𝑥𝑥,𝑦𝑦)
 

𝐴𝐴
 d𝐴𝐴 

INTERPRETATION AS THE LIMIT OF A SUM 

Similarly to the case of the single integral, the double integral is defined as the limit of the sum of 𝑁𝑁 
small segments of volume whose bottom area is Δ𝐴𝐴𝑖𝑖 and whose height is given by the function 
𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) evaluated at any point (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) inside the area Δ𝐴𝐴𝑖𝑖. The collection of all segment areas Δ𝐴𝐴𝑖𝑖 
for 𝑖𝑖 = 1 to 𝑁𝑁 covers the entire area 𝐴𝐴 in the (𝑥𝑥,𝑦𝑦) plane. 

�𝑓𝑓(𝑥𝑥,𝑦𝑦)
 

𝐴𝐴
 d𝐴𝐴 = limΔA→0  ��Δ𝐴𝐴𝑖𝑖 ⋅ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑁𝑁

𝑖𝑖=1

� 

For single integrals, the division of the interval [𝑎𝑎, 𝑏𝑏] into differential segments d𝑥𝑥 can only be done 
in one way. For double integrals, the division of the area 𝐴𝐴 into differential segments d𝐴𝐴 can be done 
in many ways.  

As a start, we will study integration in rectangular coordinates: using a rectangular grid of infinitesimal 
squares of sides d𝑥𝑥 and d𝑦𝑦, such that d𝐴𝐴 = d𝑥𝑥 d𝑦𝑦.  

The integral is a limit of a double sum of cuboids with base being a tiny square of area Δ𝐴𝐴 = Δ𝑥𝑥Δ𝑦𝑦 
and height 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗), where the double sum uses the indices 𝑖𝑖 and 𝑗𝑗 to label the rectangles across the 
𝑥𝑥 and 𝑦𝑦 directions: 

�𝑓𝑓(𝑥𝑥,𝑦𝑦)
 

𝐴𝐴
 d𝑥𝑥 d𝑦𝑦 = limΔA→0  ���Δ𝑥𝑥 ⋅ Δ𝑦𝑦 ⋅ 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)

𝑁𝑁𝑥𝑥

𝑖𝑖=1

𝑁𝑁𝑦𝑦

𝑗𝑗=1

� 
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DOUBLE INTEGRALS IN RECTANGULAR REGION: ITERATED INTEGRALS 

Double integrals can be calculated by simply considering one definite integral after another, and this 
may be done in any order. As a start, let’s consider the simplest case in which region 𝐴𝐴 is a rectangular 
region bounded by 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] and 𝑦𝑦 ∈ [𝑐𝑐,𝑑𝑑] so we simply perform the two integrals, in any order. This 
is called Fubini’s Theorem: 

 

Think about the addition of cuboids before taking the limit: the order in which we sum the rectangular 
cuboids (whether we first add them along x, and then along y, or the other way around) is irrelevant 
to the final answer of the total volume. 

Consider the first case above, where we first integrate over 𝑥𝑥 and then over 𝑦𝑦. The inner integral 

ℎ(𝑦𝑦) = ∫ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) d𝑥𝑥𝑏𝑏
𝑎𝑎  results in a function of 𝑦𝑦 only. Think about what this function represents: it is 

the area of a cut-plane of the original function. Then, when we integrate 𝑔𝑔(𝑦𝑦) d𝑦𝑦, the volume of a 
differential slice, in the interval 𝑦𝑦 ∈ [𝑐𝑐,𝑑𝑑], it results in the desired volume. 

Visual outline of Fubini’s theorem: 

 

 

𝐼𝐼 = �𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝐴𝐴
 

𝐴𝐴
= � �� 𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑥𝑥

𝑏𝑏

𝑎𝑎
�d𝑦𝑦

𝑑𝑑

𝑐𝑐
= � �� 𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑦𝑦

𝑑𝑑

𝑐𝑐
� d𝑥𝑥

𝑏𝑏

𝑎𝑎
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1) Calculate the following double integral, where the rectangular region 𝐴𝐴 is bounded by 𝑥𝑥 ∈ [0,1] 
and 𝑦𝑦 ∈ [0,1] 

�𝑥𝑥(𝑦𝑦2 + 𝑥𝑥) d𝐴𝐴
 

𝐴𝐴
  

Solution: We do the division of the area into differentials of area using rectangular coordinates, so 
that d𝐴𝐴 = d𝑥𝑥 d𝑦𝑦, and perform the iterated integration in any order: 

𝐼𝐼 = �𝑥𝑥(𝑦𝑦2 + 𝑥𝑥) d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴
= � �� (𝑥𝑥𝑦𝑦2 + 𝑥𝑥2) d𝑥𝑥

1

0
�d𝑦𝑦

1

0
 

The inner integral is: 

ℎ(𝑦𝑦) = � (𝑥𝑥𝑦𝑦2 + 𝑥𝑥2) d𝑥𝑥
1

0
=

1
2
𝑦𝑦2 +

1
3

 

And it represents the area under 𝑓𝑓(𝑥𝑥,𝑦𝑦) when 𝑦𝑦 is fixed (that is why it is a function of 𝑦𝑦) and bounded 
between the two left and right limits 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏]. 

The outer integral is then the final answer: 

𝐼𝐼 = � ℎ(𝑦𝑦) d𝑦𝑦
1

0
= � �

1
2
𝑦𝑦2 +

1
3
�  d𝑦𝑦

1

0
=

1
6

+
1
3

=
1
2

 

Note that we obtain the same result if we had chosen the reverse order in the integration: 

𝐼𝐼 = �𝑥𝑥(𝑦𝑦2 + 𝑥𝑥) d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴
= � �� (𝑥𝑥𝑦𝑦2 + 𝑥𝑥2) d𝑦𝑦

1

0
�

�������������
ℎ(𝑥𝑥)=13𝑥𝑥+𝑥𝑥

2

d𝑥𝑥
1

0
= � �

1
3
𝑥𝑥 + 𝑥𝑥2�  d𝑥𝑥

1

0
=

1
6

+
1
3

=
1
2

 

 

SEPARATION OF ITERATED INTEGRALS 

Often, the integrand can be written as a product of two functions of a single variable each. Then (as 
we know from standard integration) we can take out of the integral everything which does not depend 
on the integrated variable, as if it was a constant. Doing this, we can “separate” the double integral 
into the product of two integrals. 

�𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦) d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴
= � �� 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦) d𝑥𝑥

𝑏𝑏

𝑎𝑎
� d𝑦𝑦

𝑑𝑑

𝑐𝑐
= � 𝑔𝑔(𝑦𝑦)�� 𝑓𝑓(𝑥𝑥) d𝑥𝑥

𝑏𝑏

𝑎𝑎
� d𝑦𝑦

𝑑𝑑

𝑐𝑐

= �� 𝑓𝑓(𝑥𝑥) d𝑥𝑥
𝑏𝑏

𝑎𝑎
��� 𝑔𝑔(𝑦𝑦)d𝑦𝑦

𝑑𝑑

𝑐𝑐
� 

We usually write this as a single step: 

� � 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦) d𝑥𝑥
𝑏𝑏

𝑎𝑎
d𝑦𝑦

𝑑𝑑

𝑐𝑐
= � 𝑓𝑓(𝑥𝑥) d𝑥𝑥

𝑏𝑏

𝑎𝑎
 � 𝑔𝑔(𝑦𝑦)d𝑦𝑦

𝑑𝑑

𝑐𝑐
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C. PHYSICAL INTERPRETATION 

The mathematical description of double integrals is defined as a volume under a graph (in analogy to 
the single definite integral being defined as an area under a graph), however the physical meaning is 
often different to a volume, in the same way that single integrals are often not an area. 

 

Remember: Examples of physical interpretation of single integrals: 

The single integral can be interpreted as the sum of some quantity (typically some kind of linear 
density) over a line. In the context of physics, it is always very useful to think about the 
magnitude/units of the integrand and the result. Don’t forget that in addition to the units of the 
integrand, you also must consider the units of the differentials. 

Total mass of a rod: 

𝑀𝑀⏟
[kg]

=  � 𝜆𝜆(𝑥𝑥)�
[kg/m]

 d𝑥𝑥�
[𝑚𝑚]

𝑏𝑏

𝑎𝑎
 

Total length of a line segment (trivial): 

𝐿𝐿⏟
[m]

=  � 1 d𝑥𝑥�
[𝑚𝑚]

𝑏𝑏

𝑎𝑎
= (𝑏𝑏 − 𝑎𝑎) 

Total distance moved during a time interval, knowing the speed: 

𝑑𝑑⏟
[m]

=  � 𝑣𝑣(𝑡𝑡)�
[m/s]

 d𝑡𝑡⏟
[𝑠𝑠]

𝑏𝑏

𝑎𝑎
 

Total displacement (vector) moved during a time interval, knowing the velocity (vector): 

𝐬𝐬⏟
[m]

=  � 𝐯𝐯(𝑡𝑡)�
[m/s]

 d𝑡𝑡⏟
[𝑠𝑠]

𝑏𝑏

𝑎𝑎
 

Total force (vector) acting on a rod (as a function of a “force density” 𝐟𝐟(𝑥𝑥)[𝑁𝑁/𝑚𝑚]): 

𝐅𝐅⏟
[N]

=  � 𝐟𝐟(𝑥𝑥)�
[N/m]

 d𝑥𝑥�
[𝑚𝑚]

𝑏𝑏

𝑎𝑎
 

Total electric field created by a linear density of charge: 

𝐄𝐄⏟
[𝑁𝑁/𝑐𝑐

=𝑉𝑉/𝑚𝑚 ]

=  � 𝑘𝑘𝑒𝑒�
[N m2 C−2]

𝐞𝐞�𝑟𝑟
|𝐫𝐫|2�

[m−2]

𝜆𝜆(𝑥𝑥)�
[C/m]

 dx�
[𝑚𝑚]

�����
d𝑞𝑞 [C]𝑏𝑏

𝑎𝑎
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Examples of physical interpretation of double integrals: 

Similarly, the double integral can be interpreted as the addition of some quantity (typically some kind 
of area density) over an area (or over any two-dimensional parameter space). This is best understood 
through examples. Again, the units can help us greatly. 

Total mass of a planar object covering an area 𝐴𝐴 (with varying surface density 𝜎𝜎(𝑥𝑥,𝑦𝑦)): 

𝑀𝑀⏟
[kg]

=  � 𝜎𝜎(𝑥𝑥, 𝑦𝑦)�����
[kg/m2]

 d𝐴𝐴�
[m2]

 

𝐴𝐴
 

Total surface area of an area 𝐴𝐴 (trivial for rectangular areas but useful otherwise!) 

𝑆𝑆⏟
[m2]

=  � 1 d𝐴𝐴�
[m2]

 

𝐴𝐴
 

Total force acting on a wall covering an area 𝐴𝐴 experiencing a non-uniform pressure 𝑃𝑃(𝑥𝑥, 𝑦𝑦) 

𝐅𝐅⏟
[N]

=  � 𝑃𝑃(𝑥𝑥,𝑦𝑦)�����
[N/m2]

 d𝐴𝐴�
[m2]

𝐧𝐧�
 

𝐴𝐴
 

Total volume above sea level of an island with topography height ℎ(𝑥𝑥,𝑦𝑦) with ℎ = 0 being sea level: 

𝑉𝑉⏟
[m3]

=  � ℎ(𝑥𝑥,𝑦𝑦)�����
[m]

 d𝐴𝐴�
[m2]

 

𝐴𝐴
 

Total electric field created by a planar object covering an area 𝐴𝐴 with surface density of charge: 

𝐄𝐄⏟
[𝑁𝑁/𝑐𝑐

=𝑉𝑉/𝑚𝑚 ]

= � 𝑘𝑘𝑒𝑒�
[N m2 C−2]

𝐞𝐞�𝑟𝑟
|𝐫𝐫|2�

[m−2]

𝜎𝜎(𝑥𝑥,𝑦𝑦)�����
[C/𝑚𝑚2]

 dx�
[m]

 d𝑦𝑦�
[m]���

d𝐴𝐴 [m2]

���������
d𝑞𝑞 [C] 

𝐴𝐴
  

Total price of a plot of land 𝐴𝐴 whose price per square meter is variable 𝑝𝑝(𝑥𝑥,𝑦𝑦) 

𝑃𝑃⏟
[€]

=  � 𝑝𝑝(𝑥𝑥,𝑦𝑦)�����
[€/m2]

 d𝐴𝐴�
[m2]

 

𝐴𝐴
 

Average temperature of a surface with non-uniform temperature distribution 𝑇𝑇(𝑥𝑥, 𝑦𝑦): 

𝑇𝑇av�
[K]

=
∬ 𝑇𝑇(𝑥𝑥,𝑦𝑦) d𝐴𝐴 
𝐴𝐴
∬ 1 d𝐴𝐴 
𝐴𝐴

=
1

𝑆𝑆 [𝑚𝑚2]
� 𝑇𝑇(𝑥𝑥, 𝑦𝑦)�����

[K]
d𝐴𝐴�

[m2]

 

𝐴𝐴
  

Average of any quantity 𝑓𝑓(𝑥𝑥,𝑦𝑦) over a surface 𝐴𝐴 (also weighted average with weight 𝑤𝑤(𝑥𝑥,𝑦𝑦)): 

𝑓𝑓av =
∬ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) d𝐴𝐴 
𝐴𝐴
∬ 1 d𝐴𝐴 
𝐴𝐴

           𝑓𝑓av
weighted =

∬ 𝑓𝑓(𝑥𝑥, 𝑦𝑦) 𝑤𝑤(𝑥𝑥,𝑦𝑦) d𝐴𝐴 
𝐴𝐴
∬ 𝑤𝑤(𝑥𝑥,𝑦𝑦) d𝐴𝐴 
𝐴𝐴

 

Centre of mass (average position weighted by the density) of a planar material: 

𝐫𝐫av =
∬ 𝐫𝐫 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴 
𝐴𝐴
∬ 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴 
𝐴𝐴
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D. TRIPLE (VOLUME) INTEGRALS 

Double integrals were justified by problems based on areas and plane 2D objects. Similarly, triple 
integrals appear in problems related to volumes of 3D objects. These are defined as a limit of an 
integral sum: 

𝐼𝐼 = �𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)Δ𝑉𝑉𝑖𝑖  

 

TRIPLE INTEGRALS IN RECTANGULAR REGION BY ITERATED INTEGRATION 

�𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉
 

𝑉𝑉
= � �� �� 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) d𝑥𝑥

𝑏𝑏

𝑎𝑎
�d𝑦𝑦

𝑑𝑑

𝑐𝑐
�d𝑧𝑧

𝑓𝑓

𝑒𝑒
 

 

Examples of physical interpretation of triple integrals: 

Similarly to the double integral, the triple integral can be interpreted as the addition of some quantity 
(typically some kind of volumetric density) over a volume (or over any three-dimensional parameter 
space). This is best understood trough examples. Again, the units can help us greatly. 

Total mass of an object occupying a volume 𝑉𝑉 (with varying density 𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧)): 

𝑀𝑀⏟
[kg]

=  � 𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧)�������
[kg/m3]

 d𝑉𝑉�
[m3]

 

𝑉𝑉
 

Total volume of a region Ω 

𝑉𝑉⏟
[m3]

= � 1 d𝑉𝑉�
[m3]

 

Ω
  

Total electric field created by a 3D object covering a volume 𝑉𝑉 with varying charge density 𝜌𝜌: 

𝐄𝐄⏟
[𝑁𝑁/𝑐𝑐

=𝑉𝑉/𝑚𝑚 ]

= � 𝑘𝑘𝑒𝑒�
[N m2 C−2]

𝐞𝐞�𝑟𝑟
|𝐫𝐫|2�

[m−2]

𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧)�������
[C/𝑚𝑚3]

 dx�
[m]

 d𝑦𝑦�
[m]

 d𝑧𝑧�
[m]�������

dV [m3]

�������������
d𝑞𝑞 [C] 

𝑉𝑉
  

Average of any quantity 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) over a volume 𝑉𝑉 (also weighted average with weight 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧)): 

𝑓𝑓av =
∭ 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧)d𝑉𝑉 

𝑉𝑉
∭ 1 d𝑉𝑉 

𝑉𝑉
           𝑓𝑓av

weighted =
∭ 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧)d𝑉𝑉 

𝑉𝑉
∭ 𝑤𝑤(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉 

𝑉𝑉
 

Example: center of mass (average position weighted by the density) of a 3D object: 

𝐫𝐫av =
∭ 𝐫𝐫 𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉 

𝑉𝑉
∭  𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉 

𝑉𝑉
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2) a) Calculate the total mass of a cube of side length 2 centred in the origin whose mass density 
is given by 𝜌𝜌𝑚𝑚 = (1 + 𝑥𝑥𝑦𝑦2𝑧𝑧2) kg/m3 

The total mass is given by: 

𝑀𝑀tot�
[kg]

=  � 𝜌𝜌(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)�������
[kg/m3]

 d𝑉𝑉�
[m3]

 

𝑉𝑉
 

� (1 + 𝑥𝑥𝑦𝑦2𝑧𝑧2) d𝑉𝑉
 

𝑉𝑉
= � �� �� (1 + 𝑥𝑥𝑦𝑦2𝑧𝑧2) d𝑥𝑥

1

−1
�d𝑦𝑦

1

−1
� d𝑧𝑧

1

−1
 

We could do the iterated integrals directly, or we can take shortcuts. First, apply linearity (which also 
works for multiple integrals): 

� (1 + 𝑥𝑥𝑦𝑦2𝑧𝑧2) d𝑉𝑉
 

𝑉𝑉
= �1 d𝑉𝑉

 

𝑉𝑉
+ �𝑥𝑥𝑦𝑦2𝑧𝑧2 d𝑉𝑉

 

𝑉𝑉
 

And then apply separation of each integral (as it is made up of a product of functions of single 
variables): 

= � d𝑥𝑥
1

−1
� d𝑦𝑦
1

−1
� d𝑧𝑧
1

−1
+ � 𝑥𝑥 d𝑥𝑥

1

−1
� 𝑦𝑦2 d𝑦𝑦
1

−1
� 𝑧𝑧2 d𝑧𝑧
1

−1
 

= (𝑥𝑥)𝑥𝑥=−1𝑥𝑥=1 (𝑦𝑦)𝑦𝑦=−1
𝑦𝑦=1 (𝑧𝑧)𝑧𝑧=−1𝑧𝑧=1 + �

𝑥𝑥2

2
�
𝑥𝑥=−1

𝑥𝑥=1

�
𝑦𝑦3

3
�
𝑦𝑦=−1

𝑦𝑦=1

�
𝑧𝑧3

3
�
𝑧𝑧=−1

𝑧𝑧=1

 

= (1 + 1)(1 + 1)(1 + 1) + �
1
2
−

1
2
������

0

�
1
3

+
1
3
� �

1
3

+
1
3
� 

= 8 + 0 = 8 kg 

Notice how the 𝑥𝑥 term cancelled out the contribution from the variation in mass, so that only the 
constant density became important. That is because the variation with 𝑥𝑥 had an ODD symmetry, and 
so all the mass lacking in one side (𝑥𝑥 < 0) due to the decrease in density, was exactly compensated 
by the excess mass on the other side (𝑥𝑥 > 0). 

 

b) Calculate the centre of mass of the cube 

The centre of mass is given by: 

𝐫𝐫av =
∭ 𝐫𝐫 𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉 

𝑉𝑉
∭  𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉 

𝑉𝑉
=
∭ 𝐫𝐫 𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉 

𝑉𝑉
𝑀𝑀tot

 

We already have the denominator, which is the total mass, so we need to calculate the numerator. 
The integrand is a vector, so the result will be a vector too. We need to integrate each component 
separately: 

𝑀𝑀tot𝐫𝐫av = �𝐫𝐫 𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉
 

𝑉𝑉
 

𝑀𝑀tot �
𝑥𝑥av
𝑦𝑦av
𝑧𝑧av

� = � �
𝑥𝑥
𝑦𝑦
𝑧𝑧
�  𝜌𝜌(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉

 

𝑉𝑉
 

So, component by component: 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

4.1 (9) 

𝑀𝑀tot𝑥𝑥av = �𝑥𝑥(1 + 𝑥𝑥𝑦𝑦2𝑧𝑧2) d𝑉𝑉
 

𝑉𝑉
= �𝑥𝑥 d𝑉𝑉

 

𝑉𝑉
+ �𝑥𝑥2𝑦𝑦2𝑧𝑧2 d𝑉𝑉

 

𝑉𝑉

= � 𝑥𝑥 d𝑥𝑥
1

−1�����
0

� d𝑦𝑦
1

−1
� d𝑧𝑧
1

−1
+ � 𝑥𝑥2 d𝑥𝑥

1

−1�������
2
3

� 𝑦𝑦2 d𝑦𝑦
1

−1�������
2
3

� 𝑧𝑧2 d𝑧𝑧
1

−1�����
2
3

= 0 +
8

27
 kg ⋅ m 

𝑀𝑀tot𝑦𝑦av = �𝑦𝑦(1 + 𝑥𝑥𝑦𝑦2𝑧𝑧2) d𝑉𝑉
 

𝑉𝑉
= �𝑦𝑦 d𝑉𝑉

 

𝑉𝑉
+ �𝑥𝑥𝑦𝑦3𝑧𝑧2 d𝑉𝑉

 

𝑉𝑉

= � d𝑥𝑥
1

−1
� 𝑦𝑦 d𝑦𝑦
1

−1�����
0

� d𝑧𝑧
1

−1
+ � 𝑥𝑥 d𝑥𝑥

1

−1�����
0

� 𝑦𝑦3 d𝑦𝑦
1

−1�������
0

� 𝑧𝑧2 d𝑧𝑧
1

−1�����
2
3

= 0 kg ⋅ m 

𝑀𝑀tot𝑧𝑧av = �𝑧𝑧(1 + 𝑥𝑥𝑦𝑦2𝑧𝑧2) d𝑉𝑉
 

𝑉𝑉
= �𝑧𝑧 d𝑉𝑉

 

𝑉𝑉
+ �𝑥𝑥𝑦𝑦2𝑧𝑧3 d𝑉𝑉

 

𝑉𝑉

= � d𝑥𝑥
1

−1
� dy
1

−1
� 𝑧𝑧 dz
1

−1�����
0

+ � 𝑥𝑥 d𝑥𝑥
1

−1�����
0

� 𝑦𝑦2 d𝑦𝑦
1

−1�������
2
3

� 𝑧𝑧3 d𝑧𝑧
1

−1�����
0

= 0 kg ⋅ m 

So, overall, dividing the three results by 𝑀𝑀tot = 8 kg we get the centre of mass (weighted average 
position): 

𝐫𝐫av = �
𝑥𝑥av
𝑦𝑦av
𝑧𝑧av

� = �
1/27

0
0

�  m 

Notice how, this time, the uniform density term (1) always integrated to zero for the three integrals, 
because obviously, the centre of mass of a uniform density cube centred at the origin is the origin 
itself. However, the variation in density term (𝑥𝑥𝑦𝑦2𝑧𝑧2) does provide a non-zero centre of mass caused 
by the odd symmetry of the density along 𝑥𝑥, which moves the centre of mass in the 𝑥𝑥 direction, as the 
𝑥𝑥 = 1 side of the cube is denser than the 𝑥𝑥 = −1 side. The even symmetry of the density along 𝑦𝑦 and 
𝑧𝑧 means that the center of mass is not moved in the 𝑦𝑦 nor 𝑧𝑧 directions. 
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PROBLEMS 

3) Calculate the following integrals over the rectangular region 𝑅𝑅: 0 ≤ 𝑥𝑥 ≤ 2 and 1 ≤ 𝑦𝑦 ≤ 2 

𝐼𝐼1 = � (𝑥𝑥 + 𝑦𝑦) d𝐴𝐴
 

𝑅𝑅
 

𝐼𝐼2 = �𝑥𝑥 d𝐴𝐴
 

𝑅𝑅
 

𝐼𝐼3 = �4𝑥𝑥𝑦𝑦𝑒𝑒−𝑥𝑥2−𝑦𝑦2  dA
 

𝑅𝑅
 

Solution:  

𝐼𝐼1 = � (𝑥𝑥 + 𝑦𝑦) d𝐴𝐴
 

𝑅𝑅
= � � (𝑥𝑥 + 𝑦𝑦) d𝑦𝑦 d𝑥𝑥

2

1

2

0
= � �𝑥𝑥𝑦𝑦 +

1
2
𝑦𝑦2�

𝑦𝑦=1

𝑦𝑦=22

0
d𝑥𝑥 = � �2𝑥𝑥 + 2 − 𝑥𝑥 −

1
2
�  d𝑥𝑥

2

0

= � �𝑥𝑥 +
3
2
�  d𝑥𝑥

2

0
= �

1
2
𝑥𝑥2 +

3
2
𝑥𝑥�

𝑥𝑥=0

𝑥𝑥=2
= 2 + 3 = 5 

 

𝐼𝐼2 = � (𝑥𝑥) d𝐴𝐴
 

𝑅𝑅
= � � (𝑥𝑥) d𝑦𝑦 d𝑥𝑥

2

1

2

0
= (separation) = � d𝑦𝑦

2

1
� 𝑥𝑥
2

0
d𝑥𝑥 = (1) �

1
2
𝑥𝑥2�

𝑥𝑥=0

𝑥𝑥=2
= 2 

 

𝐼𝐼3 = ��4𝑥𝑥𝑦𝑦𝑒𝑒−𝑥𝑥2−𝑦𝑦2� d𝐴𝐴
 

𝑅𝑅
= � � �2𝑥𝑥𝑒𝑒−𝑥𝑥2  2𝑦𝑦𝑒𝑒−𝑦𝑦2� d𝑦𝑦 d𝑥𝑥

2

1

2

0
= (separation)

= � �2𝑦𝑦𝑒𝑒−𝑦𝑦2� d𝑦𝑦
2

1
� �2𝑥𝑥𝑒𝑒−𝑥𝑥2�
2

0
d𝑥𝑥 = �−𝑒𝑒−𝑦𝑦2�𝑦𝑦=1

𝑦𝑦=2
�−𝑒𝑒−𝑥𝑥2�𝑥𝑥=0

𝑥𝑥=2

= (−𝑒𝑒−4 + 𝑒𝑒−1)(−𝑒𝑒−4 + 𝑒𝑒0) = 𝑒𝑒−8 − 𝑒𝑒−5 − 𝑒𝑒−4 + 𝑒𝑒−1 

 

 

4) Calculate the following triple integral over the region 𝑉𝑉 given by the unit cube (side lengths one) 
whose centre is at the origin 

𝐼𝐼 = � sin(𝑥𝑥)  d𝑉𝑉
 

𝑉𝑉
 

Solution: 

𝐼𝐼 = � sin(𝑥𝑥)  d𝑉𝑉
 

𝑉𝑉
= � � � sin(𝑥𝑥) d𝑥𝑥 d𝑦𝑦 d𝑧𝑧

1
2

−12

1
2

−12

1
2

−12

= � (sin(𝑥𝑥)) d𝑥𝑥
1
2

−12

� d𝑦𝑦
1
2

−12

� d𝑧𝑧
1
2

−12

= [− cos 𝑥𝑥]
𝑥𝑥=−12

𝑥𝑥=12 [𝑦𝑦]
−12

1
2 [𝑧𝑧]

−12

1
2 = (0)(1)(1) = 0 
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5) Calculate the centre of mass for a square plate 0 ≤ 𝑥𝑥 ≤ 1 and 0 ≤ 𝑦𝑦 ≤ 1 whose mass density 
is 𝜎𝜎 = 𝑦𝑦𝑒𝑒𝑥𝑥. 

Remember:  

𝐫𝐫av =
∬ 𝐫𝐫 𝜎𝜎(𝑥𝑥, 𝑦𝑦) d𝐴𝐴 
𝐴𝐴
∬ 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴 
𝐴𝐴

 

 

Solution: 

Let’s calculate the denominator first (the total mass) 

�𝜎𝜎(𝑥𝑥, 𝑦𝑦) d𝐴𝐴
 

𝐴𝐴
= �𝑦𝑦𝑒𝑒𝑥𝑥  d𝑥𝑥 d𝑦𝑦

 

𝐴𝐴
= � 𝑒𝑒𝑥𝑥  d𝑥𝑥

1

0
 � 𝑦𝑦 d𝑦𝑦

1

0
= [𝑒𝑒𝑥𝑥]𝑥𝑥=0𝑥𝑥=1 �

1
2
𝑦𝑦2�

𝑦𝑦=0

𝑦𝑦=1
=
𝑒𝑒 − 1

2
 

Now calculate the three components of the nominator (integrate component by component, knowing 
that 𝐫𝐫 = (𝑥𝑥,𝑦𝑦, 0): 

�𝐫𝐫 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴
 

𝐴𝐴
=

⎝

⎛
�𝑥𝑥 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴

 

𝐴𝐴

�𝑦𝑦 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴
 

𝐴𝐴 ⎠

⎞ 

The x-component: 

�𝑥𝑥 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴
 

𝐴𝐴
= �𝑥𝑥𝑦𝑦𝑒𝑒𝑥𝑥  d𝑥𝑥 d𝑦𝑦

 

𝐴𝐴
= � 𝑥𝑥𝑒𝑒𝑥𝑥  d𝑥𝑥

1

0
 � 𝑦𝑦 d𝑦𝑦

1

0
 

 

= � 𝑥𝑥𝑒𝑒𝑥𝑥  d𝑥𝑥
1

0
 � 𝑦𝑦 d𝑦𝑦

1

0
= (1) �

1
2
𝑦𝑦2�

0

1
=

1
2

 

The y-component: 

�𝑦𝑦 𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴
 

𝐴𝐴
= �𝑦𝑦2𝑒𝑒𝑥𝑥  d𝑥𝑥 d𝑦𝑦

 

𝐴𝐴
= � 𝑒𝑒𝑥𝑥  d𝑥𝑥

1

0
 � 𝑦𝑦2 d𝑦𝑦

1

0
= [𝑒𝑒𝑥𝑥]01  �

1
3
𝑦𝑦3�

0

1
=
𝑒𝑒 − 1

3
 

So, putting it all together: 

𝐫𝐫av =
�1

2 , 𝑒𝑒 − 1
3 �

𝑒𝑒 − 1
2

= �
1

𝑒𝑒 − 1
,
2
3
� 

∫ 𝑥𝑥𝑒𝑒𝑥𝑥  d𝑥𝑥1
0  can be done using integration by parts ∫𝑢𝑢𝑣𝑣′ = 𝑢𝑢𝑣𝑣 − ∫𝑣𝑣𝑢𝑢′ 

Take � 𝑢𝑢 = 𝑥𝑥 → 𝑢𝑢′ = 1
𝑣𝑣′ = 𝑒𝑒𝑥𝑥 → 𝑣𝑣 = 𝑒𝑒𝑥𝑥 

� 𝑥𝑥𝑒𝑒𝑥𝑥  d𝑥𝑥
1

0
= [𝑥𝑥𝑒𝑒𝑥𝑥]01 − � 𝑒𝑒𝑥𝑥  d𝑥𝑥

1

0
= (𝑒𝑒 − 0) − [𝑒𝑒𝑥𝑥]01 = 𝑒𝑒 − 𝑒𝑒 + 1 = 1 
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4.2 DOUBLE AND TRIPLE INTEGRALS 

A. DOUBLE INTEGRALS IN NON-RECTANGULAR REGIONS 

In a rectangular area, the double integral was performed by integrating along one direction first, with 
constant limits of integration, and then integrating this function along the other remaining direction: 

 

 

When the region is not rectangular, we have to change the limits of integration to be a function:  

 

 

�𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴
= � �� 𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑥𝑥

𝑏𝑏

𝑎𝑎
�d𝑦𝑦

𝑑𝑑

𝑐𝑐
       or       � �� 𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑦𝑦

𝑑𝑑

𝑐𝑐
�d𝑥𝑥

𝑏𝑏

𝑎𝑎
 

 

�𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴
= � �� 𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑥𝑥

𝑏𝑏(𝑦𝑦)

𝑎𝑎(𝑦𝑦)
�d𝑦𝑦

𝑑𝑑

𝑐𝑐
       or       � �� 𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑦𝑦

𝑑𝑑(𝑥𝑥)

𝑐𝑐(𝑥𝑥)
� d𝑥𝑥

𝑏𝑏

𝑎𝑎
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Always remember that the integration removes the variable of integration, but also adds back any 
variable which appears in the limits of integration. Therefore, if we first integrate along 𝑥𝑥, we want 
the result to be a function of 𝑦𝑦 only, with no 𝑥𝑥, ready for the outer integration, so the limits cannot 
involve 𝑥𝑥. On the other hand, if we are first integrating along 𝑦𝑦, then the limits must be functions of 𝑥𝑥 
and not involve 𝑦𝑦. In principle, the order of integration is an arbitrary choice. In practice the difficulty 
of the integral (or even the feasibility) can depend on the order we choose. 

1) Calculate the area of the triangle shown by using double integrals 

 

Solution:  To calculate area using a double integral, we need to use 1 as the integrand. We will show 
both possible orders of iterated integration. 

1) Doing first the integration along 𝑦𝑦. This will mean that we must divide the area into two regions. 

 

𝐴𝐴 = �d𝑥𝑥 d𝑦𝑦
 

𝑇𝑇
= � d𝑥𝑥 d𝑦𝑦

 

𝑇𝑇1
+ � d𝑥𝑥 d𝑦𝑦

 

𝑇𝑇2
= � �� d𝑦𝑦

1+𝑥𝑥

0
� d𝑥𝑥

0

−1
+ � �� d𝑦𝑦

1−𝑥𝑥

0
� d𝑥𝑥

1

0
 

= � [𝑦𝑦]y=0
𝑦𝑦=1+𝑥𝑥d𝑥𝑥

0

−1
+ � [𝑦𝑦]y=0

𝑦𝑦=1−𝑥𝑥d𝑥𝑥
1

0
= � (1 + 𝑥𝑥)d𝑥𝑥

0

−1
+ � (1 − 𝑥𝑥)d𝑥𝑥

1

0
 

= �𝑥𝑥 +
1
2
𝑥𝑥2�

𝑥𝑥=−1

𝑥𝑥=0
+ �𝑥𝑥 −

1
2
𝑥𝑥2�

𝑥𝑥=0

𝑥𝑥=1
= 1 −

1
2

+ 1 −
1
2

= 1 

2) Doing first the integration along 𝑥𝑥. Then we can do it in one single integral as we can use a function 
for both the lower and upper limit of the inner integral. 

 

𝐴𝐴 = �d𝑥𝑥 d𝑦𝑦
 

𝑇𝑇
= � �� d𝑥𝑥

1−𝑦𝑦

𝑦𝑦−1
� d𝑦𝑦

1

0
= � [𝑥𝑥]x=y−1

𝑥𝑥=1−𝑦𝑦d𝑦𝑦
1

0
= � (2 − 2𝑦𝑦)d𝑦𝑦

1

0
= [2𝑦𝑦 − 𝑦𝑦2]𝑦𝑦=0

𝑦𝑦=1 = 1 

As you can see, this second choice made things easier. Interestingly, in some cases, one path leads to 
an impossible integral while the other path is simple. 
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2) Problem: Find ∬ (4𝑥𝑥 + 2) d𝐴𝐴 
𝑅𝑅  where 𝑅𝑅 is the region of the plane contained between the graphs 

𝑦𝑦 = 𝑥𝑥2 and 𝑦𝑦 = 2𝑥𝑥. 

Solution: First, sketch the region and label the curves. The two graphs meet at 𝑥𝑥 = 0 and 𝑥𝑥 = 2 (the 
two simultaneous solutions).  

 

We can choose two different orders of integration: 

 

(a) Integrating first along 𝑥𝑥: 

� (4𝑥𝑥 + 2) d𝐴𝐴
 

𝑅𝑅
= � �� (4𝑥𝑥 + 2)d𝑥𝑥

√𝑦𝑦

𝑦𝑦/2
�d𝑦𝑦

4

0
= � (2𝑥𝑥2 + 2𝑥𝑥)𝑥𝑥=𝑦𝑦/2

𝑥𝑥=√𝑦𝑦 d𝑦𝑦
4

0

= � �2𝑦𝑦 + 2�𝑦𝑦 −
1
2
𝑦𝑦2 − 𝑦𝑦� d𝑦𝑦

4

0
= � �−

1
2
𝑦𝑦2 + 𝑦𝑦 + 2𝑦𝑦1/2� d𝑦𝑦

4

0

= �−
1
6
𝑦𝑦3 +

1
2
𝑦𝑦2 +

4
3
𝑦𝑦3/2�

𝑦𝑦=0

𝑦𝑦=4
= −

64
6

+
16
2

+
4
3

8 = −
32
3

+ 8 +
32
3

= 8 

(b) Integrating first along 𝑦𝑦: 

� (4𝑥𝑥 + 2) d𝐴𝐴
 

𝑅𝑅
= � �� (4𝑥𝑥 + 2)d𝑦𝑦

2𝑥𝑥

𝑥𝑥2
�d𝑥𝑥

2

0
= � (4𝑥𝑥𝑦𝑦 + 2𝑦𝑦)𝑦𝑦=𝑥𝑥2

𝑦𝑦=2𝑥𝑥d𝑥𝑥
2

0

= � (8𝑥𝑥2 + 4𝑥𝑥 − 4𝑥𝑥3 − 2𝑥𝑥2) d𝑥𝑥
2

0
= � (6𝑥𝑥2 − 4𝑥𝑥3 + 4𝑥𝑥) d𝑥𝑥

2

0
= (2𝑥𝑥3 − 𝑥𝑥4 + 2𝑥𝑥2)𝑥𝑥=0𝑥𝑥=2 = 16 − 16 + 8 = 8 

 

Both give the same result. 
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B. TRIPLE INTEGRALS IN NON-RECTANGULAR REGIONS 

We can define the limits of each successive integration as functions which depend only on the 
variables whose integration we have not yet done. 

 

 

As usual, the order of integration is not fixed (but can be important for ease of calculation). 

The procedure is exactly equal to projecting the whole volume into a plane (e.g. the XY plane) and 
then performing a double integral of function 𝑔𝑔(𝑥𝑥,𝑦𝑦) over the projected area. 

  

�𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑉𝑉
 

𝑉𝑉
= �

⎣
⎢
⎢
⎢
⎡
� �� 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) d𝑧𝑧

𝑒𝑒2(𝑥𝑥,𝑦𝑦)

𝑒𝑒1(𝑥𝑥,𝑦𝑦)
�

���������������
𝑔𝑔(𝑥𝑥,𝑦𝑦)

d𝑦𝑦
𝑑𝑑(𝑥𝑥)

𝑐𝑐(𝑥𝑥)
⎦
⎥
⎥
⎥
⎤

�����������������������
ℎ(𝑧𝑧)

d𝑥𝑥
𝑏𝑏

𝑎𝑎
 

 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

4.2 (5) 

3) Calculate the integral of 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥 over the region given by 

𝑥𝑥 ≥ 0, 𝑦𝑦 ≥ 0, and 𝑥𝑥2 + 𝑦𝑦2 ≤ 𝑧𝑧 ≤ 1. 
 

Solution:  

 
We have many possibilities on the order of integration, some will be harder than others: 
 
- Start integration along 𝑧𝑧 (i.e. projecting onto the XZ plane) 

𝐼𝐼 = � �� �� 𝑥𝑥 d𝑧𝑧
1

𝑥𝑥2+𝑦𝑦2
�

√1−𝑥𝑥2

0
d𝑦𝑦� d𝑥𝑥

1

0
 

 
- Start integration along 𝑥𝑥 (i.e. projecting along the YZ plane) and then integrating along 𝑧𝑧 first: 

𝐼𝐼 = � �� �� 𝑥𝑥 d𝑥𝑥
�𝑧𝑧−𝑦𝑦2

0
�

1

𝑦𝑦2
d𝑧𝑧� d𝑦𝑦

1

0
 

 
- Start integration along 𝑥𝑥 (i.e. projecting along the YZ plane) and then integrating along 𝑦𝑦 first: 

𝐼𝐼 = � �� �� 𝑥𝑥 d𝑥𝑥
�𝑧𝑧−𝑦𝑦2

0
�

√𝑧𝑧

0
d𝑦𝑦� d𝑧𝑧

1

0
 

 
Let’s choose the third route: 
 

𝐼𝐼 = � �� �� 𝑥𝑥 d𝑥𝑥
�𝑧𝑧−𝑦𝑦2

0
�

√𝑧𝑧

0
d𝑦𝑦� d𝑧𝑧

1

0
= � �� �

𝑥𝑥2

2
�
𝑥𝑥=0

𝑥𝑥=�𝑧𝑧−𝑦𝑦2√𝑧𝑧

0
d𝑦𝑦� d𝑧𝑧

1

0
=

1
2
� �� (𝑧𝑧 − 𝑦𝑦2)

√𝑧𝑧

0
d𝑦𝑦� d𝑧𝑧

1

0

=
1
2
� �𝑧𝑧𝑦𝑦 −

1
3
𝑦𝑦3�

𝑦𝑦=0

𝑦𝑦=√𝑧𝑧
d𝑧𝑧

1

0
=

1
2
� �𝑧𝑧3/2 −

1
3
𝑧𝑧3/2� d𝑧𝑧

1

0
=

1
3
� 𝑧𝑧3/2 d𝑧𝑧
1

0
=

1
3
�
2
5
𝑧𝑧
5
2�
𝑧𝑧=0

𝑧𝑧=1

=
2

15
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C.  CHANGE OF VARIABLES IN MULTIPLE INTEGRALS 

In many cases it is possible to simplify calculation of a double integral (or calculate it at all!) by 
introducing new variables 𝑢𝑢 and 𝑣𝑣 via connection equations: 

�
𝑥𝑥 = 𝑥𝑥(𝑢𝑢, 𝑣𝑣)
𝑦𝑦 = 𝑦𝑦(𝑢𝑢, 𝑣𝑣) 

This means that, in the definition of the integral, instead of “chopping” the integration area into 
rectangles bounded by lines of constant 𝑥𝑥 and constant 𝑦𝑦, we “chop it” by using curves of constant 𝑢𝑢 
and constant 𝑣𝑣. 

For example, we can change the integration to coordinates that are rotated, or to polar coordinates: 

 

 

Let’s explain this through an example:  

  

When doing a change of variables we need to:  

(1) Change the integrand to the new variables: 𝑓𝑓(𝑥𝑥,𝑦𝑦) → 𝑓𝑓�𝑥𝑥(𝑢𝑢, 𝑣𝑣),𝑦𝑦(𝑢𝑢, 𝑣𝑣)� = 𝑓𝑓′(𝑢𝑢, 𝑣𝑣). 
(2) Change the limits to make sure they define the same integration region in the new 

coordinates. The limits may look very different in the new (𝑢𝑢, 𝑣𝑣) coordinates, usually 
simpler if the coordinates are chosen wisely, and may even allow the calculation of the 
integral.  

(3) Change the element of area d𝐴𝐴 = d𝑥𝑥 d𝑦𝑦 into some function d𝐴𝐴 = 𝑗𝑗(𝑢𝑢, 𝑣𝑣) d𝑢𝑢 d𝑣𝑣 that 

accounts for the area of the new “chopping method”. We will see that 𝑗𝑗(𝑢𝑢, 𝑣𝑣) = �𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑢𝑢,𝑣𝑣)

� 
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4) Calculate the area of a circle by doing a double integral (with an integrand of 1).  

The limits of integration in rectangular coordinates would require us to integrate: 

 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �dA
 

𝐶𝐶
= �d𝑥𝑥 d𝑦𝑦

 

𝐶𝐶
= � �� d𝑥𝑥

√𝑅𝑅2−𝑥𝑥2

−√𝑅𝑅2−𝑥𝑥2
� d𝑦𝑦

𝑅𝑅

−𝑅𝑅
 

Which is a relatively ugly integral with square roots! However, we can simplify this calculation by using 
polar coordinates; then the limits of integration become simple 𝜌𝜌 ∈ [0,𝑅𝑅] and 𝜙𝜙 ∈ [0,2𝜋𝜋]. 

 

 

How NOT to do it: Do steps (1) and (2) but forget (3) changing the differential of area 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �d𝐴𝐴
 

𝐶𝐶
≠

WRONG
�d𝜙𝜙 d𝜌𝜌

 

𝐶𝐶
= � �� d𝜙𝜙

2𝜋𝜋

0
� d𝜌𝜌

𝑅𝑅

0
= 2𝜋𝜋𝑅𝑅    (WRONG) 

Above, we simply changed the limits of integration to the ones for polar coordinates. 

However, by doing this, we obtained the area of a rectangle of sides 2𝜋𝜋 and 𝑅𝑅. That rectangle is exactly 
how the region of integration of a circle looks like when viewed in polar coordinates, however, how is 
mathematics going to know that we meant to be using polar coordinates and not integrating a 

rectangle? How can maths distinguish ∫ �∫ d𝜙𝜙2𝜋𝜋
0 �d𝜌𝜌𝑅𝑅

0  from ∫ �∫ d𝑥𝑥2𝜋𝜋
0 �d𝑦𝑦𝑅𝑅

0 ? The answer is it can’t. 

Maths doesn’t care about the symbols we use. There must be something that tells mathematics that 
we are working in deformed coordinates, and the answer is that we need to use d𝐴𝐴 = 𝜌𝜌 d𝜙𝜙 d𝜌𝜌. This 
is because the differentials of area that are closer to the origin, are clearly more “squashed” and 
“count” less towards the area than those far away! 
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So how do we know what to write for d𝐴𝐴 when changing variables? There are two methods: 

FIND 𝐝𝐝𝑨𝑨 BY GEOMETRICAL INTUITION: 

(Only works for simple cases… which is most of the times). Picture the differential area by considering 
it enclosed between lines of constant 𝑢𝑢 and 𝑣𝑣, and then find out an expression for the area created, 
in terms of d𝑢𝑢 and d𝑣𝑣. For example, for polar coordinates, consider a small increase in radius d𝜌𝜌 and 
a small increase in angle d𝜙𝜙:  

 

Since the increase in 𝜌𝜌 is infinitesimal, we can assume that the length of the arcs 𝜌𝜌 d𝜙𝜙 and (𝜌𝜌 + d𝜌𝜌)𝑑𝑑𝜙𝜙 
are equal (by ignoring squared differentials). Also, the increase in angle 𝜙𝜙 is infinitesimal, so the curved 
arc becomes a straight line. In the limit, the area tends to a parallelogram (in this case a rectangle) 
whose area is exactly the product of the sides 𝑑𝑑𝐴𝐴 = 𝜌𝜌 d𝜌𝜌 d𝜙𝜙. 

 

Let’s redo our calculation of the area of a circle now: 

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �d𝐴𝐴
 

𝐶𝐶
=

CORRECT �𝜌𝜌 d𝜙𝜙 d𝜌𝜌
 

𝐶𝐶
 

The area of the circle in polar coordinates becomes simple limits of integration 𝜌𝜌 ∈ [0,𝑅𝑅] and 𝜙𝜙 ∈
[0,2𝜋𝜋], so we can substitute: 

= � �� 𝜌𝜌 d𝜌𝜌
𝑅𝑅

0
� d𝜙𝜙

2𝜋𝜋

0
= � d𝜙𝜙

2𝜋𝜋

0
� 𝜌𝜌 d𝜌𝜌
𝑅𝑅

0
= [𝜙𝜙]𝜙𝜙=0

𝜙𝜙=2𝜋𝜋 ⋅ �
𝜌𝜌2

2
�
𝜌𝜌=0

𝜌𝜌=𝑅𝑅

= 𝜋𝜋𝑅𝑅2 

giving us the correct answer for the area of a circle. 
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FIND dA USING THE JACOBIAN - GENERAL RECIPE FOR CHANGE OF VARIABLES 

Consider what you do when you integrate a function of 𝑥𝑥 and 𝑦𝑦 over some region. Basically, you chop 
up the region into boxes of area d𝐴𝐴 = d𝑥𝑥 d𝑦𝑦, evaluate the function at a point in each box, multiply it 
by the area of the box, and sum over all boxes. What you do when changing variables is to chop the 
region into boxes that are not rectangular, and instead chop it along lines that are defined by some 
function, 𝑢𝑢(𝑥𝑥,𝑦𝑦), being constant. Now in order to evaluate the sum of boxes, which may be slanted 
now, you need to find the "area of box" for the new boxes - it's not d𝐴𝐴 = d𝑢𝑢 d𝑣𝑣 anymore. 

 

As the boxes are infinitesimal, the edges cannot be curved, so they must be parallelograms (adjacent 
lines of constant 𝑢𝑢 or constant 𝑣𝑣 are parallel). The parallelograms are defined by two vectors - the 
vector resulting from a small change in 𝑢𝑢, and the one resulting from a small change in 𝑣𝑣. In 

component form, these vectors are d𝑢𝑢 �𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢
𝐱𝐱� + 𝜕𝜕𝑦𝑦

𝜕𝜕𝑢𝑢
𝐲𝐲�� and d𝑣𝑣 �𝜕𝜕𝑥𝑥

𝜕𝜕𝑣𝑣
𝐱𝐱� + 𝜕𝜕𝑦𝑦

𝜕𝜕𝑣𝑣
𝐲𝐲��, where the derivatives are 

evaluated at 𝑥𝑥0 and 𝑦𝑦0. To see this, imagine moving a small distance d𝑢𝑢 along a line of constant 𝑣𝑣. 
What's the change in 𝑥𝑥 when you change 𝑢𝑢 but hold 𝑣𝑣 constant? The partial of 𝑥𝑥 with respect to 𝑢𝑢, 
times d𝑢𝑢. Same with the change in 𝑦𝑦. (Notice that this involves writing 𝑥𝑥 and 𝑦𝑦 as functions of 𝑢𝑢, 𝑣𝑣, 
rather than the other way around. The main condition of a change in variables is that both ways are 
possible). The area of a parallelogram bounded by two vectors is given by the determinant of the 
matrix formed when the vectors are used as columns: 

d𝐴𝐴(𝑢𝑢, 𝑣𝑣) = �
d𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

d𝑣𝑣
𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

d𝑢𝑢
𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

d𝑣𝑣
𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

� = �

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

� d𝑢𝑢 d𝑣𝑣 = �
𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)�  d𝑢𝑢 d𝑣𝑣 

Which gives us the general recipe for change of variables in multiple integration. We always must take 
the absolute value of it, as 𝑑𝑑𝐴𝐴 should always be positive. The matrix whose determinant we are taking 
is called the Jacobian of the transformation (see lesson on multivariate derivative) and it can be 
extended to more dimensions: 

𝐉𝐉 =
𝜕𝜕(𝑥𝑥,𝑦𝑦, … , 𝑧𝑧)
𝜕𝜕(𝑢𝑢, 𝑣𝑣, … ,𝑤𝑤) = �

𝜕𝜕𝑥𝑥/𝜕𝜕𝑢𝑢 𝜕𝜕𝑥𝑥/𝜕𝜕𝑣𝑣 … 𝜕𝜕𝑥𝑥/𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦/𝜕𝜕𝑢𝑢 𝜕𝜕𝑦𝑦/𝜕𝜕𝑣𝑣 … 𝜕𝜕𝑦𝑦/𝜕𝜕𝑤𝑤
⋮ ⋮ ⋱ ⋮

𝜕𝜕𝑧𝑧/𝜕𝜕𝑢𝑢 𝜕𝜕𝑧𝑧/𝜕𝜕𝑣𝑣 … 𝜕𝜕𝑧𝑧/𝜕𝜕𝑤𝑤

� 

(Parts of text taken from user Dan at StackExchange) 
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The general rule for a change of variables in double integration is:  

 

 

5) Calculate the volume of a hemisphere using a double integral in polar coordinates. 

We are going to integrate the function 𝑧𝑧 = �𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2 over an area in the XY plane given by a 
disk of radius 𝑅𝑅, i.e. 𝜌𝜌 ∈ [0,𝑅𝑅] and 𝜙𝜙 ∈ [0,2𝜋𝜋]. 

 

𝑉𝑉 = �𝑧𝑧(𝜌𝜌,𝜙𝜙) d𝐴𝐴
 

𝐷𝐷
= ��𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2 d𝐴𝐴

 

𝐷𝐷
= �𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙

𝑦𝑦 = 𝜌𝜌 sin𝜙𝜙� = � �𝑅𝑅2 − 𝜌𝜌2  (𝜌𝜌 d𝜙𝜙 d𝜌𝜌)�������
d𝐴𝐴

 

𝐷𝐷
 

= � �� 𝜌𝜌 �𝑅𝑅2 − 𝜌𝜌2
2𝜋𝜋

0
 d𝜙𝜙�d𝜌𝜌

𝑅𝑅

0
= (separation) = � 𝑑𝑑𝜙𝜙

2𝜋𝜋

0
� 𝜌𝜌 (𝑅𝑅2 − 𝜌𝜌2)

1
2 d𝜌𝜌

𝑅𝑅

0

= (2𝜋𝜋) �
1
−3

(𝑅𝑅2 − 𝜌𝜌2)
3
2�
𝜌𝜌=0

𝜌𝜌=𝑅𝑅
= (2𝜋𝜋) �

1
3
𝑅𝑅3� =

2
3
𝜋𝜋𝑅𝑅3 

which is half the volume of a sphere. 

 

6) Calculate the total mass of a disk of radius 𝑅𝑅 whose density increases with the radius as 𝜎𝜎(𝜌𝜌) = 
1 + 𝜌𝜌2. 

If we tried doing it in rectangular coordinates: 

𝑀𝑀 = �𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴
 

𝐷𝐷
= � �� (1 + 𝑥𝑥2 + 𝑦𝑦2)

�𝑅𝑅2−𝑦𝑦2

−�𝑅𝑅2−𝑦𝑦2
 d𝑥𝑥� d𝑦𝑦

𝑅𝑅

−𝑅𝑅
= (long procedure. . . ) 

In polar coordinates it becomes very easy: 

𝑀𝑀 = �𝜎𝜎(𝑥𝑥,𝑦𝑦) d𝐴𝐴
 

𝐷𝐷
= � (1 + 𝜌𝜌2) (𝜌𝜌 d𝜌𝜌 d𝜙𝜙)�������

d𝐴𝐴

 

𝐷𝐷
= � �� 𝜌𝜌(1 + 𝜌𝜌2)

𝑅𝑅

0
 d𝜌𝜌� d𝜙𝜙

2𝜋𝜋

0

= � d𝜙𝜙
2𝜋𝜋

0
� (𝜌𝜌 + 𝜌𝜌3)
𝑅𝑅

0
d𝜌𝜌 = 2𝜋𝜋 �

𝑅𝑅2

2
+
𝑅𝑅4

4
� = 𝜋𝜋𝑅𝑅2 �1 +

1
2
𝑅𝑅2� 

� 𝑓𝑓(𝑥𝑥,𝑦𝑦) d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴(𝑥𝑥𝑥𝑥)

= � 𝑓𝑓(𝑥𝑥(𝑢𝑢, 𝑣𝑣), 𝑦𝑦(𝑢𝑢, 𝑣𝑣)) �
𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)�  d𝑢𝑢 d𝑣𝑣

 

𝐴𝐴(𝑢𝑢𝑢𝑢)
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CHANGE OF VARIABLES IN TRIPLE INTEGRALS 

Change of variables in triple integrals are the same as in double integrals. We change the variables, 
the limits, and the volume element. The Jacobian is now a 3-by-3 matrix: 
 

 
 

7) Calculate the volume element d𝑉𝑉 in spherical coordinates: 

 

�
𝑥𝑥 = 𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙
𝑦𝑦 = 𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙
𝑧𝑧 = 𝑟𝑟 cos 𝜃𝜃

 

 
We can do this formally via calculation of the Jacobian determinant: 
 

𝜕𝜕(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)
𝜕𝜕(𝑟𝑟,𝜙𝜙,𝜃𝜃) = �

𝜕𝜕𝑥𝑥/𝜕𝜕𝑟𝑟 𝜕𝜕𝑥𝑥/𝜕𝜕𝜙𝜙 𝜕𝜕𝑥𝑥/𝜕𝜕𝜃𝜃
𝜕𝜕𝑦𝑦/𝜕𝜕𝑟𝑟 𝜕𝜕𝑦𝑦/𝜕𝜕𝜙𝜙 𝜕𝜕𝑦𝑦/𝜕𝜕𝜃𝜃
𝜕𝜕𝑧𝑧/𝜕𝜕𝑟𝑟 𝜕𝜕𝑧𝑧/𝜕𝜕𝜙𝜙 𝜕𝜕𝑧𝑧/𝜕𝜕𝜃𝜃

� = �
sin𝜃𝜃 cos𝜙𝜙 −𝑟𝑟 sin𝜃𝜃 sin𝜙𝜙 𝑟𝑟 cos 𝜃𝜃 cos𝜙𝜙
sin𝜃𝜃 sin𝜙𝜙 𝑟𝑟 sin𝜃𝜃 cos𝜙𝜙 𝑟𝑟 cos𝜃𝜃 sin𝜙𝜙

cos𝜃𝜃 0 −𝑟𝑟 sin𝜃𝜃
� 

= cos𝜃𝜃 (−𝑟𝑟2 sin2 𝜙𝜙 sin𝜃𝜃 cos𝜃𝜃 − 𝑟𝑟2 cos2 𝜙𝜙 sin𝜃𝜃 cos 𝜃𝜃)
− sin𝜃𝜃 (𝑟𝑟2 sin2 𝜃𝜃 cos2 𝜙𝜙 + 𝑟𝑟2 sin2 𝜃𝜃 sin2 𝜙𝜙) 

= −𝑟𝑟2 sin𝜃𝜃 cos2 𝜃𝜃 − 𝑟𝑟2 sin3 𝜃𝜃 = −𝑟𝑟2 sin𝜃𝜃 (cos2 𝜃𝜃 + sin2 𝜃𝜃) = −𝑟𝑟2 sin𝜃𝜃 
 
Therefore: 

d𝑉𝑉 = �𝜕𝜕(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝜕𝜕(𝑐𝑐,𝜙𝜙,𝜃𝜃)

�  d𝑟𝑟 d𝜃𝜃 d𝜙𝜙 = 𝑟𝑟2 sin𝜃𝜃  d𝑟𝑟 d𝜃𝜃 d𝜙𝜙 (always take the positive value as it is a volume) 

 
We can also obtain it from geometrical intuition, although it is tricky as one needs to accurately picture 
where the angles are subtended from (𝜃𝜃 is sustained from the origin, but 𝜙𝜙 is sustained from the 𝑧𝑧-
axis): 

 

� 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑥𝑥 d𝑦𝑦 d𝑧𝑧
 

𝑉𝑉(𝑥𝑥𝑥𝑥𝑥𝑥)

= � 𝑓𝑓�𝑥𝑥(𝑢𝑢, 𝑣𝑣,𝑤𝑤),𝑦𝑦(𝑢𝑢, 𝑣𝑣,𝑤𝑤), 𝑧𝑧(𝑢𝑢, 𝑣𝑣,𝑤𝑤)������������������������
𝑓𝑓′(𝑢𝑢,𝑣𝑣,𝑤𝑤)

�
𝜕𝜕(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝜕𝜕(𝑢𝑢, 𝑣𝑣,𝑤𝑤)�  d𝑢𝑢 d𝑣𝑣 d𝑤𝑤
���������������

d𝑉𝑉

 

𝑉𝑉(𝑢𝑢𝑢𝑢𝑢𝑢)
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The volume element for commonly used coordinate systems (given in the exam): 
 

 
 
 

8) Calculate the volume of a sphere using a volume integral in spherical coordinates 

In spherical coordinates, a sphere is given by 𝑟𝑟 ∈ [0,𝑅𝑅], 𝜙𝜙 ∈ [0,2𝜋𝜋] and 𝜃𝜃 ∈ [0,𝜋𝜋]. 

Therefore, the volume can be calculated in spherical coordinates as: 

𝑉𝑉 = � 1 d𝑉𝑉
  

𝑆𝑆
= � (𝑟𝑟2 sin𝜃𝜃) d𝜃𝜃 d𝑟𝑟 d𝜙𝜙�������������

d𝑉𝑉  

𝑆𝑆
= � �� �� 𝑟𝑟2 sin𝜃𝜃 d𝜃𝜃

𝜋𝜋

0
� d𝜙𝜙

2𝜋𝜋

0
� 𝑑𝑑𝑟𝑟

𝑅𝑅

0
 

= �� d𝜙𝜙
2𝜋𝜋

0
� �� 𝑟𝑟2 d𝑟𝑟

𝑅𝑅

0
� �� sin𝜃𝜃  d𝜃𝜃

𝜋𝜋

0
� = (2𝜋𝜋)�

𝑅𝑅3

3
� [− cos𝜃𝜃]𝜃𝜃=0

𝜃𝜃=𝜋𝜋  =
4
3
𝜋𝜋𝑅𝑅3 

 

Is this the first time in your education that you see this equation proven to you, rather than given? 

If only Archimedes had known about this method! He spent years trying to figure out the volume of a 
sphere. He finally did it, in an amazingly clever way by realizing that the volume between a sphere and 
a cylinder that contains it was, plane by plane, equal to that of a cone. He requested that his 
tombstone display a sphere inscribed in a cylinder. 

Here we solved it, start-to-finish, on just two lines and requiring only trivial integrals. Beautiful. 

 

Compare the efficiency of this calculation in polar coordinates to what would have been required if 
we were using rectangular coordinates:  

Coordinate system Volume element d𝑉𝑉 
Rectangular (𝑥𝑥,𝑦𝑦, 𝑧𝑧) d𝑥𝑥 d𝑦𝑦 d𝑧𝑧 
Cylindrical (𝜌𝜌,𝜙𝜙, 𝑧𝑧) 𝜌𝜌 d𝜌𝜌 d𝜙𝜙 d𝑧𝑧 
Spherical (𝑟𝑟,𝜃𝜃,𝜙𝜙) 𝑟𝑟2 sin𝜃𝜃  d𝑟𝑟 d𝜙𝜙 d𝜃𝜃 
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VOLUME OF A SPHERE BY INTEGRATION IN RECTANGULAR COORDINATES. 

To illustrate the usefulness of alternative coordinate systems, let’s calculate the volume of a sphere 
in rectangular coordinates (which as we saw can be done in two lines using spherical coordinates). 

9) Calculate the volume of a hemisphere of radius 𝑅𝑅 centred at zero with 𝑧𝑧 ≥ 0 using double 
integration in rectangular coordinates 

 

Solution: 

𝑉𝑉 = �𝑧𝑧(𝑥𝑥,𝑦𝑦)d𝑥𝑥 d𝑦𝑦
 

𝐷𝐷
 

With 𝑧𝑧(𝑥𝑥,𝑦𝑦) = �𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2 being the height of the hemisphere, and the region of integration 𝐷𝐷 
being the disk centred at 0 with radius 𝑅𝑅. We first need to find the equations for the limits of 
integration. Knowing that the equation for the circle is 𝑥𝑥2 + 𝑦𝑦2 = 𝑅𝑅2 we can find the limits of 
integration as a function 𝑦𝑦(𝑥𝑥) = ±√𝑅𝑅2 − 𝑥𝑥2 or we could have written it as a function 𝑥𝑥(𝑦𝑦) =
±�𝑅𝑅2 − 𝑦𝑦2. Using one or the other would depend on the direction of integration we choose: 

 

� �� �𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2
�𝑅𝑅2−𝑦𝑦2

−�𝑅𝑅2−𝑦𝑦2
 d𝑥𝑥� dy

𝑅𝑅

−𝑅𝑅
                                � �� �𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2

√𝑅𝑅2−𝑥𝑥2

−√𝑅𝑅2−𝑥𝑥2
d𝑦𝑦� d𝑥𝑥

𝑅𝑅

−𝑅𝑅
  

  

Now, we can be smart and simplify our lives by using arguments of symmetry. The volume of the 
hemisphere will be four times the volume of only one quarter. Therefore; 
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𝑉𝑉 = 4� �� �𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2
√𝑅𝑅2−𝑥𝑥2

0
d𝑦𝑦� d𝑥𝑥

𝑅𝑅

0
 

This is a very common integral which appears a lot when dealing with spherical surfaces. 

��𝐾𝐾2 − 𝑥𝑥2d𝑥𝑥 =
1
2
�𝑥𝑥�𝐾𝐾2 − 𝑥𝑥2 + 𝐾𝐾2 arcsin �

𝑥𝑥
𝐾𝐾
�� + 𝑐𝑐 

 

Therefore, the double integral can be solved as follows (use 𝐾𝐾2 = 𝑅𝑅2 − 𝑥𝑥2 as constant for the inner 
integral): 

𝑉𝑉 = 4� �
1
2
�𝑦𝑦�𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2 + (𝑅𝑅2 − 𝑥𝑥2) arcsin

𝑦𝑦
√𝑅𝑅2 − 𝑥𝑥2

��
𝑦𝑦=0

𝑦𝑦=√𝑅𝑅2−𝑥𝑥2

 d𝑥𝑥
𝑅𝑅

0
 

= 4�
1
2
��𝑅𝑅2 − 𝑥𝑥2 �𝑅𝑅2 − 𝑥𝑥2 − 𝑅𝑅2 + 𝑥𝑥2�������������

0
+ (𝑅𝑅2 − 𝑥𝑥2) arcsin 1�����

𝜋𝜋/2
− 0 − (𝑅𝑅2 − 𝑥𝑥2) arcsin 0�����

0
�  d𝑥𝑥

𝑅𝑅

0
 

= 4�
1
2

(𝑅𝑅2 − 𝑥𝑥2)
𝜋𝜋
2

 d𝑥𝑥
𝑅𝑅

0
= 𝜋𝜋� (𝑅𝑅2 − 𝑥𝑥2) d𝑥𝑥

𝑅𝑅

0
= 𝜋𝜋 �𝑅𝑅2𝑥𝑥 −

1
3
𝑥𝑥3�

0

𝑅𝑅
= 𝜋𝜋 �𝑅𝑅2 −

1
3
𝑅𝑅3� =

2
3
𝜋𝜋𝑅𝑅3 

Hence the volume of a sphere is twice this, 𝑉𝑉sph = 4
3
𝜋𝜋𝑅𝑅3.  

 

  

Proof: Change of variables 𝑥𝑥 = 𝐾𝐾 sin𝑢𝑢  →   d𝑥𝑥 = 𝐾𝐾 cos𝑢𝑢, which means √𝐾𝐾2 − 𝑥𝑥2 =
√𝐾𝐾2 − 𝐾𝐾2 sin2 𝑢𝑢 = 𝐾𝐾 cos𝑢𝑢: 

��𝐾𝐾2 − 𝑥𝑥2d𝑥𝑥 = 𝐾𝐾2 � cos2 𝑢𝑢  d𝑢𝑢 = 𝐾𝐾2 ��
1
2

+
1
2

cos(2𝑢𝑢)�  d𝑢𝑢 = 𝐾𝐾2 �
𝑢𝑢
2

+
1
4

sin(2𝑢𝑢)� + 𝑐𝑐 

Then apply sin(2𝑢𝑢) = 2 sin𝑢𝑢 cos𝑢𝑢 = 2 sin𝑢𝑢  √1 − sin2 𝑢𝑢  

= 𝐾𝐾2 �
𝑢𝑢
2

+
1
2

sin𝑢𝑢�1 − sin2 𝑢𝑢� + 𝑐𝑐 

and substitute back the change of variables 𝑢𝑢 = arcsin(𝑥𝑥/𝐾𝐾)  and sin𝑢𝑢 = 𝑥𝑥/𝐾𝐾 

=
1
2
�𝑥𝑥�𝐾𝐾2 − 𝑥𝑥2 + 𝐾𝐾2 arcsin �

𝑥𝑥
𝐾𝐾
�� + 𝑐𝑐 

I will provide this integral in the exam if it is needed. 
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10) Calculate the volume of a sphere of radius 𝑅𝑅 using a triple integral (in rectangular coordinates) 

Solution: 

Project the sphere onto the XZ axis by doing the integral along 𝑧𝑧: this produces a function 𝑔𝑔(𝑥𝑥,𝑦𝑦) 
whose double integral can be done over the two dimensional disk. 

 

�𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) d𝑉𝑉
 

𝑆𝑆
= �

⎣
⎢
⎢
⎢
⎡
� ��  d𝑧𝑧

�𝑅𝑅2−𝑥𝑥2−𝑦𝑦2

−�𝑅𝑅2−𝑥𝑥2−𝑦𝑦2
�

�������������
𝑔𝑔(𝑥𝑥,𝑦𝑦)

d𝑦𝑦
√𝑅𝑅2−𝑥𝑥2

−√𝑅𝑅2−𝑥𝑥2

⎦
⎥
⎥
⎥
⎤

���������������������
ℎ(𝑧𝑧)

d𝑥𝑥
𝑅𝑅

−𝑅𝑅

= � �� �2 �𝑅𝑅2 − 𝑥𝑥2 − 𝑦𝑦2��������������
𝑔𝑔(𝑥𝑥,𝑦𝑦)

d𝑦𝑦
√𝑅𝑅2−𝑥𝑥2

−√𝑅𝑅2−𝑥𝑥2
�

�����������������������
ℎ(𝑧𝑧)

d𝑥𝑥
𝑅𝑅

−𝑅𝑅
 

Which becomes identical to twice the double integral we did for the hemisphere. So, we can arrive 
once again at the answer 4

3
𝜋𝜋𝑅𝑅3. 
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PROBLEMS 

PROBLEMS: DOUBLE INTEGRATION IN NON-RECTANGULAR REGIONS 

11) Calculate the integral ∬ 𝑥𝑥𝑦𝑦 
𝑅𝑅  d𝐴𝐴 over the region 𝑅𝑅 enclosed by the lines 𝑥𝑥 = 0, 𝑦𝑦 = 0 and  

𝑦𝑦 = 1 − 𝑥𝑥:  

Solution: Integrating first along y: 

�𝑥𝑥𝑦𝑦
 

𝑅𝑅
 d𝐴𝐴 = � � 𝑥𝑥𝑦𝑦 d𝑦𝑦 d𝑥𝑥

1−𝑥𝑥

0

1

0
= � �

1
2
𝑥𝑥𝑦𝑦2�

𝑦𝑦=0

𝑦𝑦=1−𝑥𝑥
d𝑥𝑥

1

0
= � �

1
2
𝑥𝑥(1 − 𝑥𝑥)2� d𝑥𝑥

1

0
=

= � �
1
2
𝑥𝑥3 − 𝑥𝑥2 +

1
2
𝑥𝑥� d𝑥𝑥

1

0
= �

1
8
𝑥𝑥4 −

1
3
𝑥𝑥3 +

1
4
𝑥𝑥2�

0

1
=

1
8
−

1
3

+
1
4

=
1

24
 

 

12) Find the area of the region contained between the graphs 𝑥𝑥 = 𝑦𝑦3, 𝑥𝑥 + 𝑦𝑦 = 2 and 𝑦𝑦 = 0. 

Solution: First get intuition for the different graphs: 𝑦𝑦 = 0 is the x-axis; 𝑥𝑥 = 𝑦𝑦3 is the inverse of 𝑦𝑦 =
𝑥𝑥3 which requires mirror-inverting it through the diagonal 𝑥𝑥 = 𝑦𝑦; 𝑥𝑥 + 𝑦𝑦 = 2 is a straight-line crossing 
(0,2) and (2,0). The curve and the line intersect at (1,1) (solution to their simultaneous equation 
𝑦𝑦3 + 𝑦𝑦 = 2). Therefore, we draw the region: 

 
We can do this integral in two different orders. If we decide to integrate along 𝑦𝑦 first, the integral will 
need to be split into two, as the upper limit changes function half-way. 

𝐴𝐴1 = � �� 1
√𝑥𝑥3

0
d𝑦𝑦� d𝑥𝑥

1

0
+ � �� 1

2−𝑥𝑥

0
d𝑦𝑦� d𝑥𝑥

2

1
 

𝐴𝐴2 = � �� 1
2−𝑦𝑦

𝑦𝑦3
d𝑥𝑥� d𝑦𝑦

1

0
 

Both must give the same result: 

𝐴𝐴1 = � 𝑥𝑥1/3 d𝑥𝑥
1

0
+ � (2 − 𝑥𝑥)d𝑥𝑥

2

1
= �

3
4
𝑥𝑥
4
3�

𝑥𝑥=0

𝑥𝑥=1
+ �2𝑥𝑥 −

𝑥𝑥2

2
�
𝑥𝑥=1

𝑥𝑥=2

=
3
4

+ �4 − 2 − 2 +
1
2
� =

5
4

 

𝐴𝐴2 = � (𝑥𝑥)𝑥𝑥=𝑦𝑦3
𝑥𝑥=2−𝑦𝑦d𝑦𝑦

1

0
= � (2 − 𝑦𝑦 − 𝑦𝑦3)d𝑦𝑦

1

0
= �2𝑦𝑦 −

𝑦𝑦2

2
−
𝑦𝑦4

4
�
𝑦𝑦=0

𝑦𝑦=1

=
5
4
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13) Calculate 

�
sin 𝑥𝑥
𝑥𝑥

 d𝐴𝐴
 

𝑅𝑅
 

Where 𝑅𝑅 is the triangle in the XY plane bounded by the 𝑥𝑥-axis, the line 𝑦𝑦 = 𝑥𝑥, and the line  
𝑥𝑥 = 1. 

 

Solution: Start by sketching the region of integration and identifying the limits. 

 

(a) Integration along 𝑥𝑥 first: 

�
sin 𝑥𝑥
𝑥𝑥

 d𝐴𝐴
 

𝑅𝑅
= � ��

sin 𝑥𝑥
𝑥𝑥

 d𝑥𝑥
1

𝑦𝑦
�  d𝑦𝑦

1

0
 

It cannot be done. There is no antiderivative for the function sin 𝑥𝑥 /𝑥𝑥. 

 

(b) Integration along 𝑦𝑦 first: 

�
sin 𝑥𝑥
𝑥𝑥

 d𝐴𝐴
 

𝑅𝑅
= � ��

sin 𝑥𝑥
𝑥𝑥

 d𝑦𝑦
𝑥𝑥

0
�  d𝑥𝑥

1

0
 

 

The inner integration is trivial because the function does not depend on 𝑦𝑦. Then, substituting the limits 
of integration helps to simplify the outer integral: 

� ��
sin 𝑥𝑥
𝑥𝑥

 d𝑦𝑦
𝑥𝑥

0
�  d𝑥𝑥

1

0
= � �

sin 𝑥𝑥
𝑥𝑥

𝑦𝑦�
𝑦𝑦=0

𝑦𝑦=𝑥𝑥
 d𝑥𝑥

1

0
= � �

sin 𝑥𝑥
𝑥𝑥

𝑥𝑥 − 0�  d𝑥𝑥
1

0
= � sin 𝑥𝑥  d𝑥𝑥

1

0
= [− cos 𝑥𝑥]01  

= 1 − cos(1) ≈ 0.46 
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14) Find ∬ (𝑥𝑥3 + 4𝑦𝑦) d𝐴𝐴 
𝑅𝑅  where 𝑅𝑅 is the region of the plane contained between the graphs 𝑦𝑦 = 𝑥𝑥2 

and 𝑦𝑦 = 2𝑥𝑥. 

Solution: First, sketch the region and label the curves. The two graphs meet at 𝑥𝑥 = 0 and 𝑥𝑥 = 2 (the 
two simultaneous solutions).  

 

We can choose two different orders of integration: 

 

(a) Integrating first along 𝑥𝑥: 

� (𝑥𝑥3 + 4𝑦𝑦) d𝐴𝐴
 

𝑅𝑅
= � �� (𝑥𝑥3 + 4𝑦𝑦)d𝑥𝑥

√𝑦𝑦

𝑦𝑦/2
�d𝑦𝑦

4

0
= � �

1
4
𝑥𝑥4 + 4𝑦𝑦𝑥𝑥�

𝑥𝑥=𝑦𝑦/2

𝑥𝑥=√𝑦𝑦
d𝑦𝑦

4

0

= � �
𝑦𝑦2

4
+ 4𝑦𝑦3/2 −

𝑦𝑦4

64
− 2𝑦𝑦2� d𝑦𝑦

4

0
= � �−

7𝑦𝑦2

4
−
𝑦𝑦4

64
+ 4𝑦𝑦3/2� d𝑦𝑦

4

0

= �−
7𝑦𝑦3

4 ⋅ 3
−

𝑦𝑦5

5 ⋅ 64
+

8𝑦𝑦5/2

5
�
𝑦𝑦=0

𝑦𝑦=4

= −
112

3
−

16
5

+
256

5
=

32
3

 

(b) Integrating first along 𝑦𝑦: 

� (𝑥𝑥3 + 4𝑦𝑦) d𝐴𝐴
 

𝑅𝑅
= � �� (𝑥𝑥3 + 4𝑦𝑦)d𝑦𝑦

2𝑥𝑥

𝑥𝑥2
�d𝑥𝑥

2

0
= � (𝑥𝑥3𝑦𝑦 + 2𝑦𝑦2)𝑦𝑦=𝑥𝑥2

𝑦𝑦=2𝑥𝑥d𝑥𝑥
2

0

= � (2𝑥𝑥4 + 8𝑥𝑥2 − 𝑥𝑥5 − 2𝑥𝑥4)d𝑥𝑥
2

0
= �

8
3
𝑥𝑥3 −

1
6
𝑥𝑥6�

𝑥𝑥=0

𝑥𝑥=2
=

64
3
−

64
6

=
32
3

 

 

Both give the same result. 
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PROBLEMS: CHANGE OF VARIABLES 

15) Let 𝑅𝑅 be the region in the first quadrant of the 𝑥𝑥𝑦𝑦-plane bounded by the lines 𝑦𝑦 = −2𝑥𝑥 + 4, 
𝑦𝑦 = −2𝑥𝑥 + 7, 𝑦𝑦 = 𝑥𝑥 − 2 and 𝑦𝑦 = 𝑥𝑥 + 1. Evaluate the following double integral on 𝑅𝑅: 

� (2𝑥𝑥2 − 𝑥𝑥𝑦𝑦 − 𝑦𝑦2)
 

𝑅𝑅
d𝑥𝑥 d𝑦𝑦 

But do so by using the following change of variables to solve the integration: 

�
𝑢𝑢 = 𝑥𝑥 − 𝑦𝑦
𝑣𝑣 = 2𝑥𝑥 + 𝑦𝑦 

Solution:  It is convenient to have the change of variables written in its two forms (𝑢𝑢, 𝑣𝑣) → (𝑥𝑥,𝑦𝑦) and 
(𝑥𝑥,𝑦𝑦) → (𝑢𝑢, 𝑣𝑣). Solving for 𝑥𝑥 on the first equation and substituting on the second, and solving for 𝑦𝑦 
on the first and substituting on the second, we can arrive at the inverse change of variables: 

�
𝑥𝑥 =

𝑢𝑢 + 𝑣𝑣
3

 

𝑦𝑦 =
𝑣𝑣 − 2𝑢𝑢

3

 

Now, to do a change of variables on a double integral, remember we need to do three things:  

(i) Do the change of variables on the integrand 𝑓𝑓(𝑥𝑥,𝑦𝑦) → 𝑓𝑓(𝑥𝑥(𝑢𝑢, 𝑣𝑣),𝑦𝑦(𝑢𝑢, 𝑣𝑣)). 

(ii) Rewrite the limits in terms of the new variables (hopefully, this simplifies the limits) 

(iii) Change the differential area into the new variables: d𝑥𝑥 d𝑦𝑦 = �𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑢𝑢,𝑣𝑣)

�  d𝑢𝑢 d𝑣𝑣 

In order to be completely clear with the steps, I built a table: 

 

Therefore, performing the three changes, we arrive at: 

𝐼𝐼 = � (2𝑥𝑥2 − 𝑥𝑥𝑦𝑦 − 𝑦𝑦2)
 

𝑅𝑅
d𝑥𝑥 d𝑦𝑦 = � � (𝑢𝑢𝑣𝑣)

1
3

d𝑢𝑢
2

−1
d𝑣𝑣

7

4
 

which is now an easy integral to be evaluated in a rectangular region. We can integrate first along 𝑢𝑢 
or first along 𝑣𝑣. 

 Coordinates 𝑥𝑥 and 𝑦𝑦 Coordinates 𝑢𝑢 and 𝑣𝑣 

(i) Integrand 2𝑥𝑥2 − 𝑥𝑥𝑦𝑦 − 𝑦𝑦2
= (2𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) 𝑢𝑢𝑣𝑣 

(ii) Limits 

𝑦𝑦 = 𝑥𝑥 − 2 𝑢𝑢 = 2 

𝑦𝑦 = 𝑥𝑥 + 1 𝑢𝑢 = −1 

𝑦𝑦 = −2𝑥𝑥 + 4 𝑣𝑣 = 4 

𝑦𝑦 = −2𝑥𝑥 + 7 𝑣𝑣 = 7 

(iii) Differential 
of area (Jacobian 

determinant) 
d𝑥𝑥 d𝑦𝑦 

�𝜕𝜕𝑥𝑥/𝜕𝜕𝑢𝑢 𝜕𝜕𝑥𝑥/𝜕𝜕𝑣𝑣 
𝜕𝜕𝑦𝑦/𝜕𝜕𝑢𝑢 𝜕𝜕𝑦𝑦/𝜕𝜕𝑣𝑣 �d𝑢𝑢 d𝑣𝑣 = �1/3 −2/3

1/3 1/3 � d𝑢𝑢 d𝑣𝑣

=
1
3

d𝑢𝑢 d𝑣𝑣 
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Integrating first along 𝑢𝑢: 

𝐼𝐼 = � � �
𝑢𝑢𝑣𝑣
3
� d𝑢𝑢

2

−1
d𝑣𝑣

7

4
= � �

𝑢𝑢2𝑣𝑣
6
�
𝑢𝑢=−1

𝑢𝑢=2

d𝑣𝑣
7

4
= � �

4𝑣𝑣
6
−
𝑣𝑣
6
� d𝑣𝑣

7

4
= �

1
2
𝑣𝑣 d𝑣𝑣

7

4
= �

1
4
𝑣𝑣2�

4

7
=

49
4
−

16
4

=
33
4

 

Same result would be obtained integrating first along 𝑣𝑣. 

We can visualize the region of integration and the new coordinate system. Notice why the change of 
variables allowed simplified limits. The system of coordinates {𝑢𝑢, 𝑣𝑣} is perfectly aligned with the region 
of integration, and hence the limits become very simple. 

 

Also note how the Jacobian determinant of 1/3 can be interpreted as the area of the parallelepiped 
formed by a unit increase in both 𝑢𝑢 and 𝑣𝑣. 

In this example, the change of coordinates was linear, so the new coordinates formed a regular grid. 
In general curvilinear coordinates, the new grid may be curved, and the Jacobian determinant may 
depend on the position, but the mathematical steps are identical. 
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16) Let 𝑅𝑅 be the region in the first quadrant of the 𝑥𝑥𝑦𝑦-plane bounded by the hyperbolas 𝑥𝑥𝑦𝑦 = 1, 
𝑥𝑥𝑦𝑦 = 9 and the lines 𝑦𝑦 = 𝑥𝑥, 𝑦𝑦 = 4𝑥𝑥. Evaluate the following double integral on the region 𝑅𝑅: 

� ��
𝑦𝑦
𝑥𝑥

+ �𝑥𝑥𝑦𝑦�
 

𝑅𝑅
d𝑥𝑥 d𝑦𝑦 

Use the following change of variables to solve the integration: 

�𝑥𝑥 = 𝑢𝑢/𝑣𝑣
𝑦𝑦 = 𝑢𝑢𝑣𝑣  

with 𝑢𝑢 > 0 and 𝑣𝑣 > 0. 

Solution:  It is convenient to have the change of variables written in its two forms (𝑢𝑢, 𝑣𝑣) → (𝑥𝑥,𝑦𝑦) and 
(𝑥𝑥,𝑦𝑦) → (𝑢𝑢, 𝑣𝑣). Solving for 𝑢𝑢 on the first equation and substituting on the second, and solving for 𝑣𝑣 
on the first and substituting on the second, we can arrive at the inverse change of variables: 

�
𝑢𝑢 = �𝑥𝑥𝑦𝑦

𝑣𝑣 = �𝑦𝑦/𝑥𝑥
 

Now, to do a change of variables on a double integral, remember we need to do three things:  

(i) Do the change of variables on the integrand 𝑓𝑓(𝑥𝑥,𝑦𝑦) → 𝑓𝑓(𝑥𝑥(𝑢𝑢, 𝑣𝑣),𝑦𝑦(𝑢𝑢, 𝑣𝑣)). 

(ii) Rewrite the limits in terms of the new variables (hopefully, this simplifies the limits) 

(iii) Change the differential area into the new variables: d𝑥𝑥 d𝑦𝑦 = �𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑢𝑢,𝑣𝑣)

�  d𝑢𝑢 d𝑣𝑣 

Normally these can be done quickly. In order to be completely clear with the steps, I built a table: 

 

Therefore, performing the three changes, we arrive at: 

𝐼𝐼 = � ��
𝑦𝑦
𝑥𝑥

+ �𝑥𝑥𝑦𝑦�
 

𝑅𝑅
d𝑥𝑥 d𝑦𝑦 = � � (𝑢𝑢 + 𝑣𝑣)

2𝑢𝑢
𝑣𝑣

d𝑢𝑢
3

1
d𝑣𝑣

2

1
= � � �2

𝑢𝑢2

𝑣𝑣
+ 2𝑢𝑢� d𝑢𝑢

3

1
d𝑣𝑣

2

1
 

which is now an easy integral to be evaluated in a rectangular region. We can integrate first along 𝑢𝑢 
or first along 𝑣𝑣. 

 

 Coordinates 𝑥𝑥 and 𝑦𝑦 Coordinates 𝑢𝑢 and 𝑣𝑣 

(i) Integrand �
𝑦𝑦
𝑥𝑥

+ �𝑥𝑥𝑦𝑦 𝑢𝑢 + 𝑣𝑣 

(ii) Limits 

𝑥𝑥𝑦𝑦 = 1 𝑢𝑢 = 1 

𝑥𝑥𝑦𝑦 = 9 𝑢𝑢 = √9 = 3 

𝑦𝑦 = 𝑥𝑥 𝑣𝑣 = 1 

𝑦𝑦 = 4𝑥𝑥 𝑣𝑣 = √4 = 2 

(iii) Differential 
of area 

(Jacobian 
determinant) 

d𝑥𝑥 d𝑦𝑦 
�𝜕𝜕𝑥𝑥/𝜕𝜕𝑢𝑢 𝜕𝜕𝑥𝑥/𝜕𝜕𝑣𝑣 
𝜕𝜕𝑦𝑦/𝜕𝜕𝑢𝑢 𝜕𝜕𝑦𝑦/𝜕𝜕𝑣𝑣 �d𝑢𝑢 d𝑣𝑣 = �1/𝑣𝑣 −𝑢𝑢/𝑣𝑣2

𝑣𝑣 𝑢𝑢
�d𝑢𝑢 d𝑣𝑣

=
2𝑢𝑢
𝑣𝑣

d𝑢𝑢 d𝑣𝑣 
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Integrating first along 𝑢𝑢: 

𝐼𝐼 = � � �2
𝑢𝑢2

𝑣𝑣
+ 2𝑢𝑢� d𝑢𝑢

3

1
d𝑣𝑣

2

1
= � �

2
3
𝑢𝑢3

𝑣𝑣
+ 𝑢𝑢2�

𝑢𝑢=1

𝑢𝑢=3

 d𝑣𝑣
2

1
= � �

18
𝑣𝑣

+ 9 −
2

3𝑣𝑣
− 1� d𝑣𝑣

2

1

= � �
52
3
𝑣𝑣−1 + 8� d𝑣𝑣

2

1
= �

52
3

ln|𝑣𝑣| + 8𝑣𝑣�
𝑣𝑣=1

𝑣𝑣=2

=
52
3

ln 2 −
52
3

ln 1 + 16 − 8

=
52
3

ln 2 + 8 

Alternatively, integrating first along 𝑣𝑣: 

𝐼𝐼 = � � �2
𝑢𝑢2

𝑣𝑣
+ 2𝑢𝑢� d𝑣𝑣

2

1
d𝑢𝑢

3

1
= � [2𝑢𝑢2 ln|𝑣𝑣| + 2𝑢𝑢𝑣𝑣]𝑣𝑣=1𝑣𝑣=2 d𝑢𝑢

3

1

= � (2𝑢𝑢2 ln 2 + 4𝑢𝑢 − 2𝑢𝑢2 ln 1 − 2𝑢𝑢) d𝑢𝑢
3

1
= � (2𝑢𝑢2 ln 2 + 2𝑢𝑢) d𝑢𝑢

3

1

= �
2
3
𝑢𝑢3 ln 2 + 𝑢𝑢2�

𝑢𝑢=1

𝑢𝑢=3
= �18 ln 2 + 9 −

2
3

ln 2 − 1� =
52
3

ln 2 + 8 

 

 

 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

4.2 (23) 

PROBLEMS: MULTIPLE INTEGRATION IN POLAR/CYLINDRICAL/SPHERICAL COORDINATES 

17) Calculate the volume of a cone of radius 𝑅𝑅 and height ℎ using triple integration. 

 

Solution: 

A cone is clearly well suited to integration in cylindrical coordinates. The first step is to figure out 
parametric equations for the surfaces of the cone: 

 

 

These surfaces will be the limits of integration.  We can choose different orders of integration. A simple 
one is to do first the integration on 𝑧𝑧, which must go from 0 to the equation for the curved surface. 
Do not forget the Jacobian for cylindrical coordinates when substituting the volume element 𝑑𝑑𝑉𝑉 =
𝜌𝜌 d𝑧𝑧 d𝜌𝜌 d𝜙𝜙: 

 

𝑉𝑉 = �d𝑉𝑉
 

𝑅𝑅
= � � � 𝜌𝜌 d𝑧𝑧 d𝜌𝜌 d𝜙𝜙

ℎ
𝑅𝑅(𝑅𝑅−𝜌𝜌)

0

𝑅𝑅

0

2𝜋𝜋

0
= � � [𝜌𝜌𝑧𝑧]𝑧𝑧=0

𝑧𝑧=ℎ𝑅𝑅(𝑅𝑅−𝜌𝜌)𝑅𝑅

0
 d𝜌𝜌 d𝜙𝜙

2𝜋𝜋

0

= � � �ℎ𝜌𝜌 −
ℎ
𝑅𝑅
𝜌𝜌2�

𝑅𝑅

0
 d𝜌𝜌 d𝜙𝜙

2𝜋𝜋

0
= � d𝜙𝜙

2𝜋𝜋

0
� �ℎ𝜌𝜌 −

ℎ
𝑅𝑅
𝜌𝜌2�

𝑅𝑅

0
d𝜌𝜌

= (2𝜋𝜋) �
ℎ
2
𝜌𝜌2 −

ℎ
3𝑅𝑅

𝜌𝜌3�
0

𝑅𝑅

= (2𝜋𝜋)�
ℎ𝑅𝑅2

2
−
ℎ𝑅𝑅3

3𝑅𝑅
� = (2𝜋𝜋)

ℎ𝑅𝑅2

6
=
ℎ𝜋𝜋𝑅𝑅2

3
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4.2 (24) 

18) Calculate the electrostatic potential at (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = (0,0, ℎ) for a uniformly charged disk of radius 
𝑅𝑅 with charge density 𝜎𝜎. The disk lies in the 𝑋𝑋𝑋𝑋 plane and is centred at the origin. (Remember 
that the electrostatic potential Φ for a charge 𝑄𝑄 at a distance 𝑑𝑑 is given by Φ = 𝑘𝑘𝑄𝑄/𝑑𝑑). 

Solution: 

First let’s figure out what it is we are integrating. We want to obtain the potential, therefore we will 
integrate a differential element of potential: 

Φ = �dΦ
 

𝑆𝑆
 

Now, the differential element of potential corresponds to the potential created by a differential area 
d𝐴𝐴 of the disk. Such area will contain a differential charge d𝑞𝑞 = 𝜎𝜎 d𝐴𝐴. Therefore: 

Φ(𝐫𝐫0) = � dΦ
 

𝑆𝑆
= � 𝑘𝑘

d𝑞𝑞
‖𝐫𝐫 − 𝐫𝐫0‖

 

𝑆𝑆
= � 𝑘𝑘

σ
‖𝐫𝐫 − 𝐫𝐫0‖

d𝐴𝐴
 

𝑆𝑆
 

where ‖𝐫𝐫 − 𝐫𝐫0‖ is the distance between each location 𝐫𝐫 on the surface and the observation point 𝐫𝐫0 
where we are calculating the potential. From the point of view of the integral, 𝐫𝐫 = (𝑥𝑥,𝑦𝑦, 0) is the 
position being integrated along the surface, while 𝐫𝐫0 is a constant. First, the symmetry of the problem 
strongly suggests that we should perform this integral in cylindrical coordinates, so that the disk is 
given by 𝜌𝜌 ∈ [0,𝑅𝑅] and 𝜙𝜙 ∈ [0,2𝜋𝜋]. In cylindrical coordinates, the differential area is d𝐴𝐴 = 𝜌𝜌 d𝜙𝜙 d𝜌𝜌.  

A remaining issue is how to write ‖𝐫𝐫 − 𝐫𝐫0‖ , the distance between the element d𝐴𝐴 and the observation 
point. This is clearly a function of the position within the disk, in fact we can write: 𝐫𝐫 − 𝐫𝐫0 = (𝑥𝑥,𝑦𝑦, 0) −
(0,0, ℎ) = (𝑥𝑥,𝑦𝑦,−ℎ). Therefore, ‖𝐫𝐫 − 𝐫𝐫0‖  = �𝑥𝑥2 + 𝑦𝑦2 + ℎ2 = �𝜌𝜌2 + ℎ2 which must be written in 
terms of cylindrical coordinates, as 𝜌𝜌 and 𝜙𝜙 are our variables of integration. 

 

So, putting all together: 

Φ = � 𝑘𝑘
1

�𝜌𝜌2 + ℎ2
𝜎𝜎 𝜌𝜌 d𝜙𝜙 d𝜌𝜌�����

d𝐴𝐴

�������
d𝑞𝑞

���������������
dΦ

 

𝑆𝑆
= 𝑘𝑘𝜎𝜎 �� d𝜙𝜙

2𝜋𝜋

0
���

𝜌𝜌
�𝜌𝜌2 + ℎ2

d𝜌𝜌
𝑅𝑅

0
� = 2𝜋𝜋𝑘𝑘𝜎𝜎 �(𝜌𝜌2 + ℎ2)

1
2�
𝜌𝜌=0

𝜌𝜌=𝑅𝑅

= 2𝜋𝜋𝑘𝑘𝜎𝜎 ��𝑅𝑅2 + ℎ2 − ℎ� 
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4.2 (25) 

19) Calculate the volume enclosed by a sphere of radius 𝑅𝑅 ≤ 3 on the top, and the cone 
𝑧𝑧2 ≥ 𝑥𝑥2 + 𝑦𝑦2 on the bottom. 

 

Solution: Plot the region: 

 

This integral is clearly adequate for spherical coordinates. Remember d𝑉𝑉 = 𝑟𝑟2 sin𝜃𝜃  d𝑟𝑟 d𝜃𝜃 d𝜙𝜙  

𝑉𝑉 = � 1 d𝑉𝑉
  

𝑆𝑆
= � (𝑟𝑟2 sin𝜃𝜃) d𝜃𝜃 d𝑟𝑟 d𝜙𝜙

  

𝑆𝑆
= � �� �� r2 sin𝜃𝜃 d𝜃𝜃

𝜋𝜋/4

0
�d𝜙𝜙

2𝜋𝜋

0
� 𝑑𝑑𝑟𝑟

3

0
 

= �� d𝜙𝜙
2𝜋𝜋

0
� �� 𝑟𝑟2 d𝑟𝑟

3

0
� �� sin𝜃𝜃  d𝜃𝜃

𝜋𝜋/4

0
� = (2𝜋𝜋)(9)[− cos 𝜃𝜃]𝜃𝜃=0

𝜃𝜃=𝜋𝜋/4  = 18𝜋𝜋 �1 −
1
√2
� 
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4.2 (26) 

20) Calculate the volume of the solid enclosed by the cone 𝑧𝑧 = �𝑥𝑥2 + 𝑦𝑦2, the planes 𝑧𝑧 = 1 and  
𝑧𝑧 = 2, and outside the cylinder 𝑥𝑥2 + 𝑦𝑦2 = 1. 

 

Solution: Let’s plot the region: 

 

The integration in rectangular coordinates would be very messy. In cylindrical coordinates it’s easy. 
Don’t forget including the Jacobian determinant 𝜌𝜌 in the integrand. 

𝑉𝑉 = �1 d𝑉𝑉
 

𝑅𝑅
= �𝜌𝜌 d𝑧𝑧 d𝜌𝜌 d𝜙𝜙

 

𝑅𝑅
= � �� �� 𝜌𝜌 d𝑧𝑧

2

𝜌𝜌
�

2

1
d𝜌𝜌� d𝜙𝜙

2𝜋𝜋

0
= �� d𝜙𝜙

2𝜋𝜋

0
�� (𝜌𝜌𝑧𝑧)𝑧𝑧=𝜌𝜌𝑧𝑧=2

2

1
d𝜌𝜌

= 2𝜋𝜋� (2𝜌𝜌 − 𝜌𝜌2)
2

1
d𝜌𝜌 = 2𝜋𝜋 �𝜌𝜌2 −

1
3
𝜌𝜌3�

𝜌𝜌=1

𝜌𝜌=2
= 2𝜋𝜋 �4 −

8
3
− 1 +

1
3
� =

4
3
𝜋𝜋 
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4.3 (1) 

4.3 SURFACE INTEGRALS 

The double integrals we have considered so far were always limited to PLANAR regions. What if we 
want to integrate over a curved surface? For example: I want to calculate the average temperature of 
the surface of the sun. Or even simpler, I want to calculate the surface area of some surface. 

A. PARAMETRIZED SURFACES 

 

 

To be formal, we must require that each unique value of (𝑢𝑢, 𝑣𝑣) results in a single position (𝑥𝑥,𝑦𝑦, 𝑧𝑧). On 
the contrary, we can allow a same (𝑥𝑥,𝑦𝑦, 𝑧𝑧) to be represented by several values of (𝑢𝑢, 𝑣𝑣) (i.e. surfaces 
may cut across themselves).  

Examples of surface parametrizations: 

  

𝐫𝐫 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙
𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙
𝑅𝑅 cos𝜃𝜃

� spherical surface 𝐫𝐫 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

𝑅𝑅 cos𝜙𝜙
𝑅𝑅 sin𝜙𝜙
𝑧𝑧

� cylindrical surface 

A surface in 3D space can be specified via a function  
𝐫𝐫: (𝑢𝑢, 𝑣𝑣) ↦ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧)  

which maps two parameters 𝑢𝑢 and 𝑣𝑣 to points in 3-D space 𝐫𝐫(𝑢𝑢, 𝑣𝑣).  
The parameters 𝑢𝑢 and 𝑣𝑣 represent the two degrees of freedom of a surface. 
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4.3 (2) 

CURVES IN THE SURFACE, TANGENT VECTORS, NORMAL VECTOR 

If we fix 𝑢𝑢 = 𝑢𝑢0, the resulting function 𝐫𝐫(𝑢𝑢0, 𝑣𝑣): 𝑣𝑣 ↦ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) defines a curve in the surface. Similarly, 
𝐫𝐫(𝑢𝑢, 𝑣𝑣0) defines another curve in the surface.  

The tangent vectors to these curves at the location 𝐫𝐫(𝑢𝑢, 𝑣𝑣) are therefore given by: 

 

 

These are two vectors always tangent to the surface, at every location in the surface (𝑢𝑢, 𝑣𝑣). Also note 
that these two vectors form the two columns of the Jacobian matrix for 𝐫𝐫: (𝑢𝑢, 𝑣𝑣) ↦ (𝑥𝑥,𝑦𝑦, 𝑧𝑧). 

We say the surface is smooth if the functions 𝐫𝐫(𝑢𝑢, 𝑣𝑣), 𝛕𝛕𝑢𝑢(𝑢𝑢, 𝑣𝑣), and 𝛕𝛕𝑣𝑣(𝑢𝑢, 𝑣𝑣) are continuous, and the 
latter two are non-parallel everywhere inside the domain defined for 𝑢𝑢 and 𝑣𝑣. The normal vector to 
the surface must be given by the cross product of the two tangent vectors: 

 

We can express this by components in terms of Jacobian determinants: 

 

 

So, the normal is expressed via the Jacobians, which form its components. Note that the arguments 
in the nominators of the Jacobians together with the unit vectors form the cyclic sequence 𝑥𝑥 → 𝑦𝑦 →
𝑧𝑧 → 𝑥𝑥 → 𝑦𝑦 → ⋯. This helps to memorise this formula. 

𝛕𝛕𝑢𝑢(𝑢𝑢, 𝑣𝑣) = 𝜕𝜕𝐫𝐫/𝜕𝜕𝑢𝑢 
𝛕𝛕𝑣𝑣(𝑢𝑢, 𝑣𝑣) = 𝜕𝜕𝐫𝐫/𝜕𝜕𝑣𝑣 

 

𝐍𝐍 = 𝛕𝛕𝑢𝑢 × 𝛕𝛕𝑣𝑣 

 

𝐍𝐍 = �
�

𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

�
� = 𝐱𝐱� �

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

� + 𝐲𝐲� �

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

� + 𝐳𝐳� �

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

� 

 

 
𝐍𝐍 = 𝐱𝐱�

𝜕𝜕(𝑦𝑦, 𝑧𝑧)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)�����
𝐽𝐽𝑥𝑥(𝑢𝑢,𝑣𝑣)

+ 𝐲𝐲�
𝜕𝜕(𝑧𝑧, 𝑥𝑥)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)�����
𝐽𝐽𝑦𝑦(𝑢𝑢,𝑣𝑣)

+ 𝐳𝐳�
𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)�����
𝐽𝐽𝑧𝑧(𝑢𝑢,𝑣𝑣)
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4.3 (3) 

1) Calculate the normal vector 𝐍𝐍 to the outside surface of a cylinder. 

The surface can be parametrized via 𝐫𝐫(𝜙𝜙, 𝑧𝑧) where 𝐫𝐫 is given by its components 𝑥𝑥 = 𝑅𝑅 cos𝜙𝜙 ;  𝑦𝑦 =
𝑅𝑅 sin𝜙𝜙 ;  𝑧𝑧 = 𝑧𝑧 with parameters 𝜙𝜙 ∈ [0,2𝜋𝜋] and 𝑧𝑧 ∈ [0, ℎ]. 

 

𝐫𝐫 = �
𝑥𝑥
𝑦𝑦
𝑧𝑧
� = �

𝑅𝑅 cos𝜙𝜙
𝑅𝑅 sin𝜙𝜙
𝑧𝑧

� 

Let’s consider the curves defined by keeping each of the two parameters constant: 

𝐫𝐫(𝜙𝜙0, 𝑧𝑧) = 𝐫𝐫𝜙𝜙0(𝑧𝑧) = �
𝑅𝑅 cos𝜙𝜙0
𝑅𝑅 sin𝜙𝜙0

𝑧𝑧
� defines a vertical line parallel to z in the surface. 

The tangential vector to this curve is → 𝛕𝛕𝑧𝑧(𝜙𝜙) = 𝜕𝜕𝐫𝐫(𝜙𝜙0,𝑧𝑧)
𝜕𝜕𝑧𝑧

= (0,0,1) = 𝐳𝐳� 

𝐫𝐫(𝜙𝜙, 𝑧𝑧0) = 𝐫𝐫𝑧𝑧0(𝜙𝜙) = �
𝑅𝑅 cos𝜙𝜙
𝑅𝑅 sin𝜙𝜙
𝑧𝑧0

� defines a circle around the cylinder at height 𝑧𝑧0. 

The tangential vector to this curve is → 𝛕𝛕𝜙𝜙(𝑧𝑧) = 𝜕𝜕𝐫𝐫(𝜙𝜙,𝑧𝑧0)
𝜕𝜕𝜙𝜙

= (−𝑅𝑅 sin𝜙𝜙 ,𝑅𝑅 cos𝜙𝜙 , 0) = 𝑅𝑅𝐞𝐞�𝜙𝜙 

Therefore, the normal vector 𝐍𝐍 = 𝛕𝛕𝜙𝜙 × 𝛕𝛕𝑧𝑧 = 𝑅𝑅𝐞𝐞�𝜙𝜙 × 𝐳𝐳� = 𝑅𝑅𝐞𝐞�𝜌𝜌 as one would expect. 

Alternatively, we could have simply applied the direct recipe for 𝐍𝐍: 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧

𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

�� = 𝐱𝐱� �𝑅𝑅 cos𝜙𝜙 0
0 1� + 𝐲𝐲� �0 −𝑅𝑅 sin𝜙𝜙

1 0 � + 𝐳𝐳� �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

0 0
�

= 𝑅𝑅 cos𝜙𝜙 𝐱𝐱� + 𝑅𝑅 sin𝜙𝜙 𝐲𝐲� = 𝑅𝑅𝐞𝐞�𝜌𝜌 

Note that we could say that any multiple of this vector is normal to the surface, so for example we 
could normalize it and say that the unit normal vector is 𝐧𝐧� = 𝐞𝐞�𝜌𝜌. 

However, the specific vector 𝐍𝐍 with its specific scaling factor 𝑅𝑅 will be important later. So we will 
reserve the capital letter notation 𝐍𝐍 for this special vector without normalization. 
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2) Calculate the normal vector 𝐍𝐍 to the outside surface of a sphere. 

The spherical surface can be parametrized via 𝐫𝐫(𝜙𝜙,𝜃𝜃) where 𝐫𝐫 is given by: 

𝐫𝐫(𝜙𝜙,𝜃𝜃) = �
𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙
𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙
𝑅𝑅 cos𝜃𝜃

� with parameters 𝜙𝜙 ∈ [0,2𝜋𝜋] and 𝜃𝜃 ∈ [0,𝜋𝜋]. 

 

Let’s consider the curves defined by keeping each of the two parameters constant.  

If we keep 𝜙𝜙 = 𝜙𝜙0 constant and vary 𝜃𝜃 we arrive at 𝐫𝐫(𝜙𝜙0,𝜃𝜃), which define the great circles which 
cross both poles 𝑧𝑧 = ±𝑅𝑅.  

The tangential vector to these curves is → 𝛕𝛕𝜙𝜙(𝜃𝜃) = 𝜕𝜕𝐫𝐫(𝜙𝜙,𝜃𝜃)
𝜕𝜕𝜃𝜃

= �
𝑅𝑅 cos𝜃𝜃 cos𝜙𝜙
𝑅𝑅 cos𝜃𝜃 sin𝜙𝜙
−𝑅𝑅 sin𝜃𝜃

� = 𝑅𝑅𝐞𝐞�𝜃𝜃  

 

If we keep 𝜃𝜃 = 𝜃𝜃0 constant and vary 𝜙𝜙 we arrive at 𝐫𝐫(𝜙𝜙,𝜃𝜃0), which define circles parallel to the 
equator and becoming smaller as you approach the poles 𝑧𝑧 = ±𝑅𝑅. 

The tangential vector to these curves is: 

 → 𝛕𝛕𝜃𝜃(𝜙𝜙) = 𝜕𝜕𝐫𝐫(𝜙𝜙,𝜃𝜃)
𝜕𝜕𝜙𝜙

= �
−𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙
𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙

0
� = 𝑅𝑅 sin𝜃𝜃 �

− sin𝜙𝜙
cos𝜙𝜙

0
� = 𝑅𝑅 sin𝜃𝜃 𝐞𝐞�𝜙𝜙 

Therefore, the normal vector 𝐍𝐍 = 𝛕𝛕𝜙𝜙 × 𝛕𝛕𝜃𝜃 = 𝑅𝑅𝐞𝐞�𝜃𝜃 × 𝑅𝑅 sin𝜃𝜃 𝐞𝐞�𝜙𝜙 = 𝑅𝑅2 sin𝜃𝜃 𝐞𝐞�𝑟𝑟, in the direction of the 
radial unit vector, as one would have expected. 

Alternatively, we could have followed the recipe: 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜃𝜃

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃

𝜕𝜕𝑥𝑥
𝜕𝜕𝜃𝜃

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜃𝜃

𝜕𝜕𝑦𝑦
𝜕𝜕𝜃𝜃

�� = (… ) = 𝑅𝑅2 sin𝜃𝜃 𝐞𝐞�𝑟𝑟  
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B. SURFACE INTEGRAL (DOUBLE INTEGRAL OVER A SURFACE) 

When we have done a double integral in the past, we always integrated over a planar region, so how 
are we supposed to do an integration over a surface or region that is curved?  

The answer is that we don’t need to! We can map the curved surface into a planar region, by simply 
using the plane of the parameters (𝑢𝑢, 𝑣𝑣), and we can carry on with the double integral as usual, as 
long as the surface area element d𝑆𝑆 is properly chosen to match the actual surface element on which 
the little square d𝑢𝑢 d𝑣𝑣 in parameter space (𝑢𝑢, 𝑣𝑣) maps to in the actual surface in (𝑥𝑥,𝑦𝑦, 𝑧𝑧) space.  

 

This should remind you greatly of the change of variables.  

The surface element can in general depend on the position d𝑆𝑆 = 𝑔𝑔(𝑢𝑢, 𝑣𝑣) d𝑢𝑢 d𝑣𝑣. 

So, we can perform the surface integral as a double integral in the space of the parameters 𝑢𝑢 and 𝑣𝑣.  

�𝑓𝑓(𝑢𝑢, 𝑣𝑣) d𝑆𝑆
 

𝑆𝑆
= � � 𝑓𝑓(𝑢𝑢, 𝑣𝑣)𝑔𝑔(𝑢𝑢, 𝑣𝑣)d𝑢𝑢 d𝑣𝑣���������

d𝑆𝑆

𝑢𝑢2(𝑣𝑣)

𝑢𝑢1(𝑣𝑣)

𝑣𝑣2

𝑣𝑣1
 

As a special case, the area of the surface 𝑆𝑆 can be calculated by integrating with unit integrand: 

𝐴𝐴 = �1 d𝑆𝑆
 

𝑆𝑆
 

But how do we find the surface element d𝑆𝑆? Like in change of variables, we have both an intuitive 
way and a formal recipe to find the surface element d𝑆𝑆. 
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OPTION 1: FIND d𝑆𝑆 BY GEOMETRICAL INTUITION 

Useful most of the time for simple surfaces: cylinders, spheres, cones.  

Draw, or imagine, being at any point in your surface defined by the two parameters (𝑢𝑢, 𝑣𝑣). Then 
calculate the area d𝑆𝑆 which is swept when 𝑢𝑢 → 𝑢𝑢 + 𝑑𝑑𝑢𝑢 and 𝑣𝑣 → 𝑣𝑣 + 𝑑𝑑𝑣𝑣. In the limit of small 
differentials, the area swept becomes a parallelogram.  

3) Calculate the area of the outer curved surface of a cylinder of radius 𝑅𝑅 and height 𝐻𝐻 by doing 
a surface integral 

Solution: Our two parameters can be the angle and the height. Now imagine, or draw, the little 
“curved rectangle” created by an increase in angle 𝑑𝑑𝜙𝜙 and an increase in height 𝑑𝑑𝑧𝑧.  Remember that 
we define the angle 𝜙𝜙 as subtended from the 𝑧𝑧-axis, not the origin 

 

The little rectangle will, in the limit of small differentials, become a planar surface. Clearly the area is 
the product of its sides, so d𝑆𝑆 = 𝑅𝑅 d𝜙𝜙 d𝑧𝑧. 

Therefore, we can perform the integration as a simple double integration in the two dimensional space 
of variables (𝜙𝜙, 𝑧𝑧): 

𝐴𝐴 = �d𝑆𝑆
 

𝑆𝑆
= � 𝑅𝑅 d𝜙𝜙 d𝑧𝑧�����

d𝑆𝑆 

𝑆𝑆(𝜙𝜙𝑧𝑧)

= � �� 𝑅𝑅 d𝜙𝜙
2𝜋𝜋

0
� d𝑧𝑧

𝐻𝐻

0
= 𝑅𝑅� d𝑧𝑧

𝐻𝐻

0
� d𝜙𝜙
2𝜋𝜋

0
= 2𝜋𝜋𝑅𝑅𝐻𝐻 

Alternative method: notice that if we carry out the integral in 𝜙𝜙 first, we can interpret the result as a 
single integration of a new circular surface element d𝑆𝑆′ (shown below). But this would not have been 
possible if some of the limits depended on 𝜙𝜙, or if we had used an integrand that depended on 𝜙𝜙. 

� �� 𝑅𝑅 d𝜙𝜙
2𝜋𝜋

0
� d𝑧𝑧

𝐻𝐻

0
= � 2𝜋𝜋𝑅𝑅 d𝑧𝑧

𝐻𝐻

0
= � d𝑆𝑆′

𝐻𝐻

0
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4) Calculate the surface area of a sphere of radius 𝑅𝑅. 

Solution: Our two parameters can be the azimuthal angle 𝜙𝜙 and the elevation angle 𝜃𝜃 commonly used 
in spherical coordinates. Now imagine, or draw, the little “curved rectangle” created by an increase in 
angle 𝑑𝑑𝜙𝜙 and a simultaneous increase in angle 𝑑𝑑𝜃𝜃. Remember that the angle 𝑑𝑑𝜃𝜃 is subtended at the 
origin, while the angle 𝑑𝑑𝜙𝜙 is subtended at the z-axis (by definition of the spherical coordinates) 

 

The little rectangle will, in the limit of small differentials, become a planar surface. The area of the 
rectangle will be the product of its sides, so d𝑆𝑆 = (𝑅𝑅 sin𝜃𝜃  𝑑𝑑𝜙𝜙)(𝑅𝑅 𝑑𝑑𝜃𝜃) = 𝑅𝑅2 sin𝜃𝜃  d𝜙𝜙 d𝜃𝜃. 

Therefore, we can perform the integration as a simple double integration in the plane of (𝜙𝜙, 𝑧𝑧): 

𝐴𝐴 = �d𝑆𝑆
 

𝑆𝑆
= � 𝑅𝑅2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃

 

𝑆𝑆(𝜙𝜙𝑧𝑧)

= 𝑅𝑅2 �� d𝜙𝜙
2𝜋𝜋

0
��� sin𝜃𝜃 d𝜃𝜃

𝜋𝜋

0
� = 2𝜋𝜋𝑅𝑅2(− cos𝜃𝜃)𝜃𝜃=0

𝜃𝜃=𝜋𝜋 = 4𝜋𝜋𝑅𝑅2 

Alternative interpretation: If we carry out the integral in 𝜙𝜙 first, the resulting area can be interpreted 
as a single integral of a circular surface element: 

� � 𝑅𝑅2 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙
2𝜋𝜋

0

𝜋𝜋

0
= � (2𝜋𝜋𝑅𝑅 sin𝜃𝜃)(𝑅𝑅 d𝜃𝜃)

𝜋𝜋

0
= � d𝑆𝑆′

𝜋𝜋

0
 

 

 

That’s it! The surface of a sphere was the problem which Archimedes was most proud to have solved! 
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OPTION 2: FIND d𝑆𝑆 WITH THE NORM OF NORMAL VECTOR 𝐍𝐍 (GENERAL RECIPE) 

In some cases, the curve can be too complicated to find d𝑆𝑆 by intuition. In this case we can follow a 
recipe, which always works. 

 

The area of the surface formed by an increase 𝑢𝑢 → 𝑢𝑢 + 𝑑𝑑𝑢𝑢 and 𝑣𝑣 → 𝑣𝑣 + 𝑑𝑑𝑣𝑣 is actually the area of the 
parallelogram formed by the two vectors 𝛕𝛕𝑢𝑢d𝑢𝑢 and 𝛕𝛕𝑣𝑣d𝑣𝑣, where 𝛕𝛕𝑢𝑢 and 𝛕𝛕𝑣𝑣 are the tangent vectors 
defined earlier using partial derivatives. As we well know, the area of this parallelogram is given by 
the absolute value of the cross product. Therefore d𝑆𝑆 = ‖(𝛕𝛕𝑢𝑢d𝑢𝑢 ) × (𝛕𝛕𝑣𝑣d𝑣𝑣)‖, which can be written 
by taking the factors d𝑢𝑢 and d𝑣𝑣 outside: 

 

Where 𝐍𝐍 is the same normal vector defined earlier using the Jacobians. I have seen many books write 
this in an unnecessarily scary way, by explicitly writing everything directly, as follows: “A double 
integral of an integrand 𝑓𝑓(𝑢𝑢, 𝑣𝑣) over a surface parametrized by (𝑢𝑢, 𝑣𝑣) is given by: 

𝐼𝐼 = �𝑓𝑓(𝑢𝑢, 𝑣𝑣) d𝑆𝑆
 

𝑆𝑆
= � 𝑓𝑓(𝑢𝑢, 𝑣𝑣) ��

𝜕𝜕(𝑦𝑦, 𝑧𝑧)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)

�
2

+ �
𝜕𝜕(𝑧𝑧, 𝑥𝑥)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)

�
2

+ �
𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑢𝑢, 𝑣𝑣)

�
2 

𝑆𝑆(𝑢𝑢𝑢𝑢)

d𝑢𝑢 d𝑣𝑣 

Notice that this form has already substituted ‖𝐍𝐍‖  = �𝑁𝑁𝑥𝑥2 + 𝑁𝑁𝑦𝑦2 + 𝑁𝑁𝑧𝑧2 

 

Insight: Look at the equation above. The change of variables in double integrals in planar regions using 
the Jacobian in the previous lesson is nothing else than a special case of the current general equation, 
when 𝐍𝐍 has only a 𝐳𝐳� component because the surface of integration is in the 𝑋𝑋𝑋𝑋 plane. 

  

d𝑆𝑆 = ‖𝛕𝛕𝑢𝑢 × 𝛕𝛕𝑣𝑣‖ d𝑢𝑢 d𝑣𝑣 = ‖𝐍𝐍‖ d𝑢𝑢 d𝑣𝑣 
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5) Find d𝑆𝑆 for the curved surface of a cylinder using the general recipe 

Solution: From an earlier problem, after some tedious steps we found: 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧

𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

�� = 𝐱𝐱� �𝑅𝑅 cos𝜙𝜙 0
0 1� + 𝐲𝐲� �0 −𝑅𝑅 sin𝜙𝜙

1 0 � + 𝐳𝐳� �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

0 0
�

= 𝑅𝑅 cos𝜙𝜙 𝐱𝐱� + 𝑅𝑅 sin𝜙𝜙 𝐲𝐲� = 𝑅𝑅𝐞𝐞�𝜌𝜌 

Therefore, the recipe gives d𝑆𝑆 = ‖𝐍𝐍‖ d𝜙𝜙 d𝑧𝑧 = 𝑅𝑅 d𝜙𝜙 d𝑧𝑧, in agreement with our intuitive derivation. 

 

6) Find d𝑆𝑆 for the surface of a sphere using the general recipe 

Solution: From an earlier problem, after some tedious steps we found: 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜃𝜃

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃

𝜕𝜕𝑥𝑥
𝜕𝜕𝜃𝜃

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜃𝜃

𝜕𝜕𝑦𝑦
𝜕𝜕𝜃𝜃

�� = (… ) = 𝑅𝑅2 sin𝜃𝜃 𝐞𝐞�𝑟𝑟  

Therefore, the recipe tells us 𝑑𝑑𝑆𝑆 = ‖𝐍𝐍‖ d𝜙𝜙 d𝑧𝑧 = 𝑅𝑅2 sin𝜃𝜃 d𝜙𝜙 d𝑧𝑧, in agreement with our intuitive 
derivation. 

 

PARAMETRIZATION OF A SURFACE GIVEN AS A MATHEMATICAL FUNCTION 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦) 

Often in maths, a surface is given as a function 𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑦𝑦). How can we write that as a parametrized 
function 𝐫𝐫(𝑢𝑢, 𝑣𝑣) in order to do the integration? 

A possible answer is very simple: use 𝑥𝑥 and 𝑦𝑦 as the two parameters. 

𝐫𝐫(𝑢𝑢, 𝑣𝑣) = �
𝑢𝑢
𝑣𝑣

𝑓𝑓(𝑢𝑢, 𝑣𝑣)
� 
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7) Calculate the surface area of the cone given by 𝑧𝑧 = �𝑥𝑥2 + 𝑦𝑦2 cut between the planes 𝑧𝑧 = 0 
and 𝑧𝑧 = 𝑅𝑅. 

Solution: First, picture what this cone looks like. It is a cone at 45 degrees with the z axis, i.e. with a 
slope of 1. Now, we need to parametrize this cone. 

Option 1: Use 𝑥𝑥 and 𝑦𝑦 as parameters 𝐫𝐫(𝑥𝑥,𝑦𝑦) = �𝑥𝑥,𝑦𝑦,�𝑥𝑥2 + 𝑦𝑦2�. In that case, the normal vector 𝐍𝐍 is: 

𝐍𝐍 = 𝐱𝐱�
𝜕𝜕(𝑦𝑦, 𝑧𝑧)
𝜕𝜕(𝑥𝑥,𝑦𝑦)�����
𝐽𝐽𝑥𝑥(𝑥𝑥,𝑦𝑦)

+ 𝐲𝐲�
𝜕𝜕(𝑧𝑧, 𝑥𝑥)
𝜕𝜕(𝑥𝑥,𝑦𝑦)�����
𝐽𝐽𝑦𝑦(𝑥𝑥,𝑦𝑦)

+ 𝐳𝐳�
𝜕𝜕(𝑥𝑥,𝑦𝑦)
𝜕𝜕(𝑥𝑥,𝑦𝑦)�����
𝐽𝐽𝑧𝑧(𝑥𝑥,𝑦𝑦)

= 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

��

= 𝐱𝐱� �0 𝑥𝑥(𝑥𝑥2 + 𝑦𝑦2)−1/2

1 𝑦𝑦(𝑥𝑥2 + 𝑦𝑦2)−1/2� + 𝐲𝐲� �𝑥𝑥
(𝑥𝑥2 + 𝑦𝑦2)−1/2 1
𝑦𝑦(𝑥𝑥2 + 𝑦𝑦2)−1/2 0

� + 𝐳𝐳� �1 0
0 1� = −

𝑥𝑥 𝐱𝐱� + 𝑦𝑦 𝐲𝐲� 
�𝑥𝑥2 + 𝑦𝑦2

+ 𝐳𝐳� 

Therefore, the surface element is given by: 

d𝑆𝑆 = ‖𝐍𝐍‖ d𝑥𝑥 d𝑦𝑦 = �
𝑥𝑥2

𝑥𝑥2 + 𝑦𝑦2
+

𝑦𝑦2

𝑥𝑥2 + 𝑦𝑦2
+ 1 d𝑥𝑥 d𝑦𝑦 = √2 d𝑥𝑥 d𝑦𝑦 

And so the integral is: 

𝐴𝐴 = �d𝑆𝑆
 

𝑆𝑆
= � √2 d𝑥𝑥 d𝑦𝑦

 

disk
= √2� d𝑥𝑥 d𝑦𝑦

 

disk
= √2𝜋𝜋𝑅𝑅2 

Option 2: Figure out some other way to parametrize the surface. For example, we could use the height 
𝑧𝑧 as one parameter, and the polar angle 𝜙𝜙 as another, and then think how to parametrize the cone. 
This requires some visual intuition. For example: 

𝐫𝐫(𝑧𝑧,𝜙𝜙) = �
𝑧𝑧 cos𝜙𝜙
𝑧𝑧 sin𝜙𝜙
𝑧𝑧

� 

We can now figure out the surface element by doing d𝑆𝑆 = ‖𝐍𝐍‖ d𝑧𝑧 d𝜙𝜙, or alternatively, with a good 
imagination, you can figure it out intuitively: d𝑆𝑆 = (𝑧𝑧 d𝜙𝜙)(√2 d𝑧𝑧). Can you explain why?  

 

Therefore, the integral is: 

𝐴𝐴 = �d𝑆𝑆
 

𝑆𝑆
= � (𝑧𝑧√2) d𝑧𝑧 d𝜙𝜙

 

S(𝑧𝑧,𝜙𝜙)

= √2�� 𝑧𝑧 d𝑧𝑧
𝑅𝑅

0
� �� d𝜙𝜙

2𝜋𝜋

0
� = √2𝜋𝜋𝑅𝑅2 
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C. SURFACE INTEGRATION OF SCALAR AND VECTOR FIELDS 

In the previous examples we were calculating areas of the surface, i.e. the integrand was 1 d𝑆𝑆. In 
general, we can also integrate some scalar field on the surface, i.e. 

𝐼𝐼 = �𝑓𝑓(𝐫𝐫) d𝑆𝑆
 

𝑆𝑆
 

Still, we need to obtain the appropriate d𝑆𝑆 for a parametrized surface and proceed as with a normal 
double integration. 

 

We could define the following steps for surface integration (with practice, you should be able 
to stop thinking about steps and do them automatically): 

�𝑓𝑓(𝐫𝐫) d𝑆𝑆
 

𝑆𝑆
 

 

(1) Define parametrization of the surface 𝑆𝑆 

𝐫𝐫(𝑢𝑢, 𝑣𝑣) = �
𝑥𝑥(𝑢𝑢, 𝑣𝑣)
𝑦𝑦(𝑢𝑢, 𝑣𝑣)
𝑧𝑧(𝑢𝑢, 𝑣𝑣)

� 

(2) Obtain the surface differential 

 (i) Remember it, or look it up (for typical spherical and cylindrical surfaces) 

 (ii) Obtain it from geometrical intuition 

 (iii) Obtain it from the normal vector to the surface 𝐍𝐍 

d𝑆𝑆(𝑢𝑢, 𝑣𝑣) = ‖𝐍𝐍(𝑢𝑢, 𝑣𝑣)‖d𝑢𝑢 d𝑣𝑣 = �
𝜕𝜕𝐫𝐫
𝜕𝜕𝑢𝑢

×
𝜕𝜕𝐫𝐫
𝜕𝜕𝑣𝑣
�d𝑢𝑢 d𝑣𝑣 

= �𝐱𝐱� �

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

� + 𝐲𝐲� �

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

� + 𝐳𝐳� �

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

�� d𝑢𝑢 d𝑣𝑣               

 

(3) Evaluate the integrand at the surface (as a function of the parameters) 

𝑓𝑓(𝐫𝐫)      
𝐫𝐫(𝑢𝑢,𝑣𝑣) 
�⎯⎯⎯�       𝑓𝑓(𝑢𝑢, 𝑣𝑣) 

 

(4) Perform the double integral in the (𝑢𝑢, 𝑣𝑣) plane [use appropriate limits of planar double 
integral such that the parameters cover the whole surface S] 

�𝑓𝑓(𝐫𝐫) d𝑆𝑆
 

𝑆𝑆
= � � 𝑓𝑓(𝑢𝑢, 𝑣𝑣) ‖𝐍𝐍(𝑢𝑢, 𝑣𝑣)‖d𝑢𝑢 d𝑣𝑣�����������

d𝑆𝑆

𝑢𝑢2(𝑣𝑣)

𝑢𝑢1(𝑣𝑣)

𝑣𝑣2

𝑣𝑣1
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8) Calculate the surface integral ∬ 𝑥𝑥 d𝑆𝑆 
𝑆𝑆  where the surface 𝑆𝑆 is the part of the sphere  

𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑅𝑅2 in which 𝑥𝑥 > 0, 𝑦𝑦 > 0 and 𝑧𝑧 > 0 (i.e. the first octant). 

Solution:  

(1) Define parametrization of the surface 

This surface is easy to parametrize if we use spherical coordinates: 

 𝐫𝐫(𝜃𝜃,𝜙𝜙) = (𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙 ,𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙 ,𝑅𝑅 cos𝜙𝜙) with: 𝜙𝜙 ∈ [0,𝜋𝜋/2] and 𝜃𝜃 ∈ [0,𝜋𝜋/2] to cover only 
the first octant.   

(2) Obtain the surface differential 

As we derived in a previous exercise, the spherical surface element is given by d𝑆𝑆 = 𝑅𝑅2 sin𝜃𝜃  d𝜙𝜙 d𝜃𝜃.  

(3) Evaluate the integrand at the surface (as a function of the parameters) 

 

The function 𝑓𝑓(𝐫𝐫) = 𝑥𝑥 changes value throughout the surface, so to perform the integral we cannot 
treat it as a constant, we need to evaluate the integrand ON the surface, i.e. substitute the value of 
𝑥𝑥 from the surface parametrization 𝐫𝐫 = (𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙 ,𝑅𝑅 sin𝜃𝜃 sin𝜙𝜙 ,𝑅𝑅 cos𝜙𝜙), to write it in terms of 
the parameters: 

𝑓𝑓(𝐫𝐫) = 𝑥𝑥      
𝐫𝐫(𝜃𝜃,𝜙𝜙) 
�⎯⎯⎯�        𝑓𝑓(𝜃𝜃,𝜙𝜙) = 𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙 

(4) We are ready to perform the required integral in the (𝜃𝜃,𝜙𝜙) plane: 

𝐼𝐼 = �𝑥𝑥 d𝑆𝑆
 

𝑆𝑆
= � (𝑅𝑅 sin𝜃𝜃 cos𝜙𝜙)���������

𝑥𝑥
(𝑅𝑅2 sin𝜃𝜃) d𝜙𝜙 d𝜃𝜃�����������

d𝑆𝑆

 

𝑆𝑆(𝜙𝜙𝜙𝜙)

= 𝑅𝑅3 �� sin2 𝜃𝜃  d𝜃𝜃
𝜋𝜋
2

0
��� cos𝜙𝜙  d𝜙𝜙

𝜋𝜋
2

0
�

= 𝑅𝑅3 �� �
1
2
−

1
2

cos 2𝜃𝜃�  d𝜃𝜃
𝜋𝜋
2

0
��� cos𝜙𝜙  d𝜙𝜙

𝜋𝜋
2

0
� = 𝑅𝑅3 �

𝜃𝜃
2
−

1
4

sin 2𝜃𝜃�
𝜃𝜃=0

𝜃𝜃=𝜋𝜋2
[sin𝜙𝜙]𝜙𝜙=0

𝜙𝜙=𝜋𝜋2

= 𝑅𝑅3 �
𝜋𝜋
4
− 0 − 0 + 0� (1 − 0) =

𝜋𝜋𝑅𝑅3

4
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We can also integrate a vector over a surface, the result being another vector: 

𝐈𝐈 = �𝐟𝐟(𝑢𝑢, 𝑣𝑣) d𝑆𝑆
 

𝑆𝑆
 

We just do the integral separately for each component of the vector. This is simple to understand as 
follows (linearity of the integral and taking the basis vectors outside): 

𝐈𝐈 = �𝐟𝐟(𝑢𝑢, 𝑣𝑣) d𝑆𝑆
 

𝑆𝑆
= � (𝑓𝑓𝑥𝑥(𝑢𝑢, 𝑣𝑣)𝐱𝐱� + 𝑓𝑓𝑦𝑦(𝑢𝑢, 𝑣𝑣)𝐲𝐲� + 𝑓𝑓𝑧𝑧(𝑢𝑢, 𝑣𝑣)𝐳𝐳�) d𝑆𝑆

 

𝑆𝑆

= 𝐱𝐱��𝑓𝑓𝑥𝑥(𝑢𝑢, 𝑣𝑣) d𝑆𝑆
 

𝑆𝑆
+ 𝐲𝐲��𝑓𝑓𝑥𝑥(𝑢𝑢, 𝑣𝑣) d𝑆𝑆

 

𝑆𝑆
+ 𝐳𝐳��𝑓𝑓𝑥𝑥(𝑢𝑢, 𝑣𝑣) d𝑆𝑆

 

𝑆𝑆
 

 

9) Calculate 𝐈𝐈 = ∬ 𝐞𝐞�𝑟𝑟
 
𝑆𝑆  d𝑆𝑆, the integral of 𝐟𝐟 = 𝐞𝐞�𝑟𝑟  over the surface of a sphere 𝑆𝑆. 

Solution: 

In spherical coordinates we have: d𝑆𝑆 = 𝑅𝑅2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃, with the parameters 𝜙𝜙 ∈ [0,2𝜋𝜋] and 𝜃𝜃 ∈
[0,𝜋𝜋]. The unit vector 𝐞𝐞�𝑟𝑟 varies throughout the surface, so we must write it in terms of constant 
rectangular unit vectors (look up the equation): 𝐞𝐞�𝑟𝑟 = (sin𝜃𝜃 cos𝜙𝜙)𝐱𝐱� + (sin𝜃𝜃 sin𝜙𝜙)𝐲𝐲� + (cos 𝜃𝜃)𝐳𝐳�. So: 

𝐈𝐈 = �𝐞𝐞�𝑟𝑟
 

𝑆𝑆
 d𝑆𝑆 = � (sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐲𝐲� + cos𝜃𝜃 𝐳𝐳�) 𝑅𝑅2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃

 

𝑆𝑆
 

= 𝐱𝐱��𝑅𝑅2 sin2 𝜃𝜃 cos𝜙𝜙 d𝜙𝜙 d𝜃𝜃
 

𝑆𝑆
+ 𝐲𝐲��𝑅𝑅2 sin2 𝜃𝜃 sin𝜙𝜙 d𝜙𝜙 d𝜃𝜃

 

𝑆𝑆
+ 𝐳𝐳��𝑅𝑅2 sin𝜃𝜃 cos𝜃𝜃 d𝜙𝜙 d𝜃𝜃

 

𝑆𝑆
= 𝟎𝟎 

Each of these integrals, evaluated over the sphere, gives 0. The net result is zero as expected, because 
the vector sum of 𝐞𝐞�𝑟𝑟 over a whole sphere will clearly cancel out: every element of the surface has an 
opposite one with exactly the opposite vector. 

 

Just one warning: be careful when integrating vectors in cylindrical or spherical BASIS, because, 
as you know, the unit vectors in those bases depend on position, and therefore cannot be taken 
outside the integrals as constants. So, you cannot integrate the components in cylindrical or 
spherical coordinates separately. When integrating such vectors, it is convenient to convert them 
to rectangular basis first, so that 𝐱𝐱�, 𝐲𝐲�, 𝐳𝐳� being constant can then be taken outside of the integral 
(i.e. integrate each component separately). 
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D.  FLUX OF A VECTOR FIELD OVER A SURFACE 

We define the flux of a vector field 𝐅𝐅(𝑥𝑥,𝑦𝑦, 𝑧𝑧) over a surface 𝑆𝑆 as: 

 
Please note that 𝐧𝐧� = 𝐍𝐍/‖𝐍𝐍‖ is a unit vector normal to the surface, and the dot product (𝐅𝐅 ⋅ 𝐧𝐧�) is 
giving us a scalar function 𝐹𝐹𝑛𝑛(𝑢𝑢, 𝑣𝑣) which we then integrate over the surface as explained earlier. The 
scalar function 𝐹𝐹𝑛𝑛(𝑢𝑢, 𝑣𝑣) gives us the component of the vector 𝐅𝐅 in the direction 𝐧𝐧� perpendicular to the 
surface. 

Suggestion when doing these problems: take it step by step. First focus on obtaining the scalar 
integrand (𝐅𝐅 ⋅ 𝐧𝐧�)d𝑆𝑆. Make sure it is a scalar function, and make sure that everything is expressed in 
terms of the parameters of the surface (plus constants) (𝐅𝐅 ⋅ 𝐧𝐧�)d𝑆𝑆 = 𝑓𝑓(𝑢𝑢, 𝑣𝑣) d𝑢𝑢 d𝑣𝑣.  

In many problems, it is easier to use the following expression for d𝐒𝐒 in terms of 𝐍𝐍 without having to 
normalize it, because the ‖𝐍𝐍‖ dividing 𝐧𝐧� cancels out with the ‖𝐍𝐍‖ multiplying in d𝑆𝑆: 

 

 

INTUITIVE UNDERSTANDING: 

This type of integral is extremely common in physics when the vector field 𝐅𝐅 represents the flux density 
of something, so the flux integral represents the total flow. Some examples are given below.  

Conserved 
quantity Flow of conserved quantity per unit area 

Equation 
(𝜌𝜌 = density of quantity; 
𝐯𝐯 = velocity of quantity) 

Mass Mass flux density 𝐉𝐉𝑚𝑚 (kg s−1m−2) 𝐉𝐉𝑚𝑚 = 𝜌𝜌 𝐯𝐯 

Charge Current density 𝐉𝐉𝑐𝑐 (C s−1m−2 ≡ A m−2) 𝐉𝐉𝑐𝑐 = 𝜌𝜌 𝐯𝐯 

Energy Energy flux density (J s−1m−2 ≡ W m−2) 
or Power density 

Different equations for 
different types of energy flux  

 

With these flux density vectors, the total flux of the quantity through a given surface per unit time is: 

𝐼𝐼 = � (𝐉𝐉 ⋅ 𝐧𝐧�) ���
scalar

d𝑆𝑆
 

𝑆𝑆
= �𝐉𝐉𝑐𝑐 ⋅ d𝐒𝐒

 

𝑆𝑆
 

  

Φ = � (𝐅𝐅 ⋅ 𝐧𝐧�) �����
scalar

d𝑆𝑆
 

𝑆𝑆
= �𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆
 

 
d𝐒𝐒 ≝ 𝐧𝐧� d𝑆𝑆 

d𝐒𝐒 ≝ 𝐧𝐧� d𝑆𝑆 =
𝐍𝐍
‖𝐍𝐍‖�
𝐧𝐧�

‖𝐍𝐍‖d𝑢𝑢 d𝑣𝑣�������
d𝑆𝑆

= 𝐍𝐍 d𝑢𝑢 d𝑣𝑣 
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10) Water is flowing through a cylindrical pipe of radius 𝑅𝑅. Let’s assume that water flows fastest at 
the centre of the pipe with a speed 𝑣𝑣0 (ms−1) and slows down to zero at the walls of the tube 
in a linear way. 

The “mass flux density” of water in this tube can then be approximated by  
𝐅𝐅 = 𝐳𝐳� 𝐾𝐾𝑣𝑣0(1 − 𝜌𝜌/𝑅𝑅) where 𝐾𝐾 (kg m−3) is the density of water, and 𝜌𝜌 is the radial cylindrical 
coordinate. Calculate the total flux of water through the pipe per second. 

 

1. Find a parametrization of the surface 
 
The surface can be parametrised as a flat cylindrical plate in cylindrical coordinates 𝜙𝜙 ∈ [0,2𝜋𝜋] and 
𝜌𝜌 ∈ [0,𝑅𝑅].  

𝐫𝐫(𝜌𝜌,𝜙𝜙) = �
𝜌𝜌 cos𝜙𝜙
𝜌𝜌 sin𝜙𝜙

0
� 

2. Find the vector differential surface element d𝐒𝐒  
 
The surface element for polar coordinates is d𝑆𝑆 = 𝜌𝜌 d𝜙𝜙 d𝜌𝜌 and the normal to the surface is 𝐧𝐧� = 𝐳𝐳�. 
Hence, we know that d𝐒𝐒 = 𝐧𝐧� d𝑆𝑆 = 𝜌𝜌 d𝜙𝜙 d𝜌𝜌 𝐳𝐳� 

 

 

3. Find the scalar integrand for the flux by doing the dot product 𝐅𝐅 ⋅ d𝐒𝐒 

𝐅𝐅 ⋅ d𝐒𝐒 = �𝐳𝐳� 𝐾𝐾𝑣𝑣0 �1 −
𝜌𝜌
𝑅𝑅
�� ⋅ (𝜌𝜌 d𝜙𝜙 d𝜌𝜌 𝐳𝐳�) = 𝐾𝐾𝑣𝑣0𝜌𝜌 �1 −

𝜌𝜌
𝑅𝑅
�  d𝜙𝜙 d𝜌𝜌 

4. Calculate the flux integral 

The integral is now a scalar double integral. 

Φ = � 𝐅𝐅 ⋅ d𝐒𝐒 ���
scalar d𝜙𝜙

 

𝑆𝑆
= � 𝐾𝐾𝑣𝑣0𝜌𝜌 �1 −

𝜌𝜌
𝑅𝑅
�  d𝜙𝜙 d𝜌𝜌

 

𝑆𝑆
= 𝐾𝐾𝑣𝑣0 � d𝜙𝜙

2𝜋𝜋

0
� �𝜌𝜌 �1 −

𝜌𝜌
𝑅𝑅
�� d𝜌𝜌

𝑅𝑅

0

= 2𝜋𝜋𝐾𝐾𝑣𝑣0 �
𝜌𝜌2

2
−
𝜌𝜌3

3𝑅𝑅
�
𝜌𝜌=0 

𝜌𝜌=𝑅𝑅

= 2𝜋𝜋𝐾𝐾𝑣𝑣0𝑅𝑅2 �
1
2
−

1
3
� =

1
3
𝜋𝜋𝐾𝐾𝑣𝑣𝑜𝑜𝑅𝑅2 

That would be the flux of water in (kg s−1). 

If this was not obvious, you can follow the recipe: 

→ 𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜌𝜌

𝜕𝜕𝑧𝑧
𝜕𝜕𝜌𝜌

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜌𝜌

𝜕𝜕𝑥𝑥
𝜕𝜕𝜌𝜌

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜌𝜌

𝜕𝜕𝑦𝑦
𝜕𝜕𝜌𝜌

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

��

= 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜌𝜌

0

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

0
�� + 𝐲𝐲� ��

0
𝜕𝜕𝑥𝑥
𝜕𝜕𝜌𝜌

0
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

�� + 𝐳𝐳� � cos𝜙𝜙 sin𝜙𝜙
−𝜌𝜌 sin𝜙𝜙 𝜌𝜌 cos𝜙𝜙� = 𝐳𝐳� 𝜌𝜌  

Therefore, the surface element is d𝐒𝐒 = 𝐍𝐍 d𝜙𝜙 d𝜌𝜌 = 𝐳𝐳� 𝜌𝜌 d𝜙𝜙 d𝜌𝜌 

Also,  d𝐒𝐒 = ‖𝐍𝐍‖ d𝜙𝜙 d𝜌𝜌 = 𝜌𝜌 d𝜙𝜙 d𝜌𝜌; and 𝐧𝐧� = 𝐍𝐍
‖𝐍𝐍‖

= 𝐳𝐳�  
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11) Find the flux of the field 𝐅𝐅 = 𝑦𝑦𝑧𝑧𝐱𝐱� + 𝑥𝑥𝑧𝑧𝐲𝐲� + 𝑥𝑥𝑦𝑦𝐳𝐳� through the outer surface of the cylinder with 
radius 𝑅𝑅 and z-values 0 < 𝑧𝑧 < ℎ (consider only the curved surface, not the caps). 

Solution: 

Φ = � (𝐅𝐅 ⋅ 𝐧𝐧�) �����
scalar

d𝑆𝑆
 

𝑆𝑆
= �𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆
 

1. Decide the parametrization of the surface: 

We are going to use cylindrical coordinates to integrate the cylindrical surface, by varying 𝜙𝜙 ∈ [0,2𝜋𝜋] 
and 𝑧𝑧 ∈ [0, ℎ].  

𝐫𝐫(𝜙𝜙, 𝑧𝑧) = �
𝑅𝑅 cos𝜙𝜙
𝑅𝑅 sin𝜙𝜙
𝑧𝑧

� 

2. Find the vector surface differential d𝐒𝐒: 

By geometric intuition, or by looking it up, we know that the scalar surface element for the curved 
surface of a cylinder is d𝑆𝑆 = 𝑅𝑅 d𝜙𝜙 d𝑧𝑧. Also, by geometrical intuition we can identify the unit vector 
normal to the surface 𝐧𝐧� = 𝐞𝐞�𝜌𝜌. 

So, by intuition, or looking it up, we can arrive at the vector surface differential: 

d𝐒𝐒 = 𝑅𝑅𝐞𝐞�𝜌𝜌d𝜙𝜙 d𝑧𝑧 = (𝑅𝑅 cos𝜙𝜙 𝐱𝐱� + 𝑅𝑅 sin𝜙𝜙 𝐲𝐲�) d𝜙𝜙 d𝑧𝑧 

 

 

3. Find the scalar integrand for the flux by doing the dot product 𝐅𝐅 ⋅ d𝐒𝐒 

𝐅𝐅 ⋅ d𝐒𝐒 = (𝑦𝑦𝑧𝑧𝐱𝐱� + 𝑥𝑥𝑧𝑧𝐲𝐲� + 𝑥𝑥𝑦𝑦𝐳𝐳�) ⋅ (𝑅𝑅 cos𝜙𝜙 𝐱𝐱� + 𝑅𝑅 sin𝜙𝜙 𝐲𝐲�) d𝜙𝜙 d𝑧𝑧 

we need to write the rectangular coordinates in terms of the coordinates of the surface: {𝑥𝑥 =
𝑅𝑅 cos𝜙𝜙 ,𝑦𝑦 = 𝑅𝑅 sin𝜙𝜙 , 𝑧𝑧 = 𝑧𝑧} (Note that we used 𝑅𝑅 and not 𝜌𝜌 because our surface is at 𝜌𝜌 = 𝑅𝑅): 

𝐅𝐅 ⋅ d𝐒𝐒 = (𝑧𝑧𝑅𝑅 sin𝜙𝜙 𝐱𝐱� + 𝑧𝑧𝑅𝑅 cos𝜙𝜙 𝐲𝐲� + 𝑅𝑅2 cos𝜙𝜙 sin𝜙𝜙 𝐳𝐳�) ⋅ (𝑅𝑅 cos𝜙𝜙 𝐱𝐱� + 𝑅𝑅 sin𝜙𝜙 𝐲𝐲�) d𝜙𝜙 d𝑧𝑧 

= (𝑧𝑧𝑅𝑅2 sin𝜙𝜙 cos𝜙𝜙 + 𝑧𝑧𝑅𝑅2 sin𝜙𝜙 cos𝜙𝜙) d𝜙𝜙 d𝑧𝑧 = 2𝑧𝑧𝑅𝑅2 sin𝜙𝜙 cos𝜙𝜙  d𝜙𝜙 d𝑧𝑧  

 

 

We can derive all the above from calculation of 𝐍𝐍, as follows: 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝑧𝑧

𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝑧𝑧

𝜕𝜕𝑦𝑦
𝜕𝜕𝑧𝑧

��

= 𝐱𝐱� �𝑅𝑅 cos𝜙𝜙 0
0 1� + 𝐲𝐲� �0 −𝑅𝑅 sin𝜙𝜙

1 0 � + 𝐳𝐳� �
𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

0 0
� = 𝑅𝑅 cos𝜙𝜙 𝐱𝐱� + 𝑅𝑅 sin𝜙𝜙 𝐲𝐲�

= 𝑅𝑅𝐞𝐞�𝜌𝜌 

So that: d𝐒𝐒 = 𝐍𝐍 d𝜙𝜙 d𝑧𝑧 = 𝑅𝑅𝐞𝐞�𝜌𝜌 d𝜙𝜙 d𝑧𝑧  
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4. Calculate the (scalar) double integral 

Φ = � (𝐅𝐅 ⋅ d𝐒𝐒) �����
scalar d𝜙𝜙

 

𝑆𝑆
= �2𝑧𝑧𝑅𝑅2 sin𝜙𝜙 cos𝜙𝜙 d𝜙𝜙 d𝑧𝑧

 

𝑆𝑆
= 2𝑅𝑅2 � 𝑧𝑧 d𝑧𝑧

ℎ

0
� sin𝜙𝜙 cos𝜙𝜙 d𝜙𝜙
2𝜋𝜋

0

= 2𝑅𝑅2 �
ℎ2

2
� �

1
2

sin2 𝜙𝜙�
𝜙𝜙=0

𝜙𝜙=2𝜋𝜋
= 0 

 

 

 

  

Alternatively, one can obtain the integrand as (𝐅𝐅 ⋅ 𝐧𝐧�) d𝑆𝑆 by calculating 𝐧𝐧� and d𝑆𝑆 

d𝑆𝑆 = ‖𝐍𝐍‖d𝜙𝜙 d𝑧𝑧 = �(𝑅𝑅 cos𝜙𝜙)2 + (𝑅𝑅 sin𝜙𝜙)2 = 𝑅𝑅 d𝜙𝜙 d𝑧𝑧 

𝐧𝐧� =
𝐍𝐍
‖𝐍𝐍‖

=
𝑅𝑅𝐞𝐞�𝜌𝜌
𝑅𝑅

= 𝐞𝐞�𝜌𝜌 

𝐅𝐅 ⋅ 𝐧𝐧� = (𝑦𝑦𝑧𝑧𝐱𝐱� + 𝑥𝑥𝑧𝑧𝐲𝐲� + 𝑥𝑥𝑦𝑦𝐳𝐳�) ⋅ 𝐞𝐞�𝜌𝜌 = (𝑦𝑦𝑧𝑧𝐱𝐱� + 𝑥𝑥𝑧𝑧𝐲𝐲� + 𝑥𝑥𝑦𝑦𝐳𝐳�) ⋅ (cos𝜙𝜙 𝐱𝐱� + sin𝜙𝜙 𝐲𝐲�)
= (𝑧𝑧𝑅𝑅 sin𝜙𝜙 𝐱𝐱� + 𝑧𝑧𝑅𝑅 cos𝜙𝜙 𝐲𝐲� + 𝑅𝑅2 cos𝜙𝜙 sin𝜙𝜙 𝐳𝐳�) ⋅ (cos𝜙𝜙 𝐱𝐱� + sin𝜙𝜙 𝐲𝐲�)
= 2𝑧𝑧𝑅𝑅 sin𝜙𝜙 cos𝜙𝜙 

So the integrand becomes: 

(𝐅𝐅 ⋅ 𝐧𝐧�) d𝑆𝑆 = (2𝑧𝑧𝑅𝑅 sin𝜙𝜙 cos𝜙𝜙)(𝑅𝑅 d𝜙𝜙 d𝑧𝑧) = 2𝑧𝑧𝑅𝑅2 sin𝜙𝜙 cos𝜙𝜙 d𝜙𝜙 d𝑧𝑧 

Exactly as above. This procedure is usually longer, because we need to calculate ‖𝐍𝐍‖ and 𝐧𝐧�, and 
later multiply times the scalar d𝑆𝑆 = ‖𝐍𝐍‖d𝜙𝜙 d𝑧𝑧 such that the ‖𝐍𝐍‖ cancels out. 
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PROBLEMS 

SURFACE INTEGRALS OF SCALAR INTEGRANDS (INCLUDING CALCULATION OF AREAS) 

12) Find the area of the surface cut from the paraboloid 𝑥𝑥2 + 𝑦𝑦2 − 𝑧𝑧 = 0 by the plane 𝑧𝑧 = 1. 

Solution: 

𝐴𝐴 = �d𝑆𝑆
 

𝑆𝑆
 

1. Decide the parametrization of the surface 𝑆𝑆. There are many options for this! Let’s use 𝑥𝑥 and 𝑦𝑦 as 
the two parameters to be integrated in the unit disk in the 𝑥𝑥𝑦𝑦 plane. Hence, the surface 
parametrization is: 

𝐫𝐫(𝑥𝑥, 𝑦𝑦) = �
𝑥𝑥
𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2
� 

2. Find the surface element d𝑆𝑆 as a function of the parameter differentials d𝑥𝑥 d𝑦𝑦 

Let’s start by calculating 𝐍𝐍: 

𝐍𝐍 =
∂𝐫𝐫
∂𝑥𝑥

×
∂𝐫𝐫
∂𝑦𝑦

= 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

�� = 𝐱𝐱� �0 2𝑥𝑥
1 2𝑦𝑦� + 𝐲𝐲� �2𝑥𝑥 1

2𝑦𝑦 0� + 𝐳𝐳� �1 0
0 1�

= −2𝑥𝑥 𝐱𝐱� − 2𝑦𝑦 𝐲𝐲� + 𝐳𝐳� 

Therefore: 

d𝑆𝑆 = ‖𝐍𝐍‖ d𝑥𝑥 d𝑦𝑦 = �(2𝑥𝑥)2 + (2𝑦𝑦)2 + 12 d𝑥𝑥 d𝑦𝑦 = �4(𝑥𝑥2 + 𝑦𝑦2) + 1 d𝑥𝑥 d𝑦𝑦 

3. Find the integrand in terms of the parameters: 1 d𝑆𝑆(𝑥𝑥,𝑦𝑦) is ready for integration. 

4. Perform the integration over the 𝑥𝑥𝑦𝑦 parameter space (the region is the unit disk, obtained by 
substituting 𝑧𝑧 = 1, so it needs to be an iterated integral with variable limits).  

A = �d𝑆𝑆
 

𝑆𝑆
= � �� �4(𝑥𝑥2 + 𝑦𝑦2) + 1 d𝑥𝑥

�1−𝑦𝑦2

−�1−𝑦𝑦2
�

1

−1
 d𝑦𝑦 

This might be solvable with care and labour, but it seems easier to change the double integration into 
polar coordinates by using a change of variables, 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙 ,𝑦𝑦 = 𝜌𝜌 sin𝜙𝜙 and don’t forget the 
Jacobian d𝑥𝑥 d𝑦𝑦 = 𝜌𝜌 d𝜌𝜌 d𝜙𝜙. That way the limits of integration become constant and the integral is 
separable: 

A = � �� 𝜌𝜌�4𝜌𝜌2 + 1 d𝜌𝜌
1

0
�

2𝜋𝜋

0
 d𝜙𝜙 = (separation) = � d𝜙𝜙

2𝜋𝜋

0
� 𝜌𝜌(4𝜌𝜌2 + 1)

1
2 d𝜌𝜌

1

0

= 2𝜋𝜋 �
1

�3
2� (4)(2)

(4𝜌𝜌2 + 1)
3
2�

0

1

=
2𝜋𝜋
12

�5
3
2 − 1� =

𝜋𝜋
6
�5√5 − 1� 
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13) Find the integral ∬ 𝑥𝑥2 d𝑆𝑆 
𝑆𝑆  where 𝑆𝑆 is the sphere of unit radius centred in the origin. 

Solution: 

1. Decide the parametrization of the surface 𝑆𝑆. Clearly this integration is well suited for spherical 
coordinates with 𝑟𝑟 = 1: 

𝐫𝐫(𝜃𝜃,𝜙𝜙) = (sin𝜃𝜃 cos𝜙𝜙 , sin𝜃𝜃 sin𝜙𝜙 ,𝑎𝑎 cos 𝜃𝜃) with parameters 𝜃𝜃 ∈ [0,𝜋𝜋] and 𝜙𝜙 ∈ [0,2𝜋𝜋]. 

2. Find the surface differential d𝑆𝑆 in terms of d𝜃𝜃 d𝜙𝜙. These are spherical coordinates, so we look it 
up: 

d𝑆𝑆 = 𝑟𝑟2 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙 = sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙 when 𝑟𝑟 = 1 

3. Find the integrand in terms of the parameters (simply substitute 𝑥𝑥 = sin𝜃𝜃 cos𝜙𝜙) 

𝑥𝑥2 = sin2 𝜃𝜃 cos2 𝜙𝜙 

4. Calculate the integral. 

𝐼𝐼 = �𝑥𝑥2 d𝑆𝑆
 

𝑆𝑆
= � � sin2 𝜃𝜃 cos2 𝜙𝜙���������

𝑥𝑥2
sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙�������

d𝑆𝑆

𝜋𝜋

0

2𝜋𝜋

0
= (separation) = � cos2 𝜙𝜙 d𝜙𝜙

2𝜋𝜋

0
� sin3 𝜃𝜃 d𝜃𝜃
𝜋𝜋

0
 

Let’s perform the integrals separately: 

� cos2 𝜙𝜙 d𝜙𝜙
2𝜋𝜋

0
= � �

1
2

+
1
2

cos 2𝜙𝜙� d𝜙𝜙
2𝜋𝜋

0
= �

1
2
𝜙𝜙 +

1
4

sin 2𝜙𝜙�
0

2𝜋𝜋
= 𝜋𝜋 

� sin3 𝜃𝜃 d𝜃𝜃
𝜋𝜋

0
= � sin𝜃𝜃 sin2 𝜃𝜃 d𝜃𝜃

𝜋𝜋

0
= � sin𝜃𝜃 (1 − cos2 𝜃𝜃)d𝜃𝜃

𝜋𝜋

0
= � (sin𝜃𝜃 − sin𝜃𝜃 cos2 𝜃𝜃)d𝜃𝜃

𝜋𝜋

0

= �− cos 𝜃𝜃 +
1
3

cos3 𝜃𝜃�
0

𝜋𝜋
= �1 −

1
3
� − �−1 +

1
3
� =

4
3

 

Therefore, 

𝐼𝐼 = � cos2 𝜙𝜙 d𝜙𝜙
2𝜋𝜋

0
� sin3 𝜃𝜃 d𝜃𝜃
𝜋𝜋

0
= (𝜋𝜋) �

4
3
� =

4𝜋𝜋
3

 

 

14) Find the area of the surface 𝑥𝑥2 − 2𝑦𝑦 − 2𝑧𝑧 = 0 that lies above the triangle bounded by the 
lines 𝑥𝑥 = 2, 𝑦𝑦 = 0 and 𝑦𝑦 = 3𝑥𝑥 in the 𝑥𝑥𝑦𝑦 plane. 

𝐴𝐴 = �d𝑆𝑆
 

𝑆𝑆
 

1. Decide the parametrization of the surface 𝑆𝑆 

This is not any easily visualized surface, so we can just take it as a function 𝑧𝑧(𝑥𝑥,𝑦𝑦) = 1
2
𝑥𝑥2 − 𝑦𝑦 and use 

𝑥𝑥 and 𝑦𝑦 as the two parameters to be integrated in the given triangle in the 𝑥𝑥𝑦𝑦 plane. Hence, the surface 
parametrization is: 

𝐫𝐫(𝑥𝑥,𝑦𝑦) = �

𝑥𝑥
𝑦𝑦

1
2
𝑥𝑥2 − 𝑦𝑦

� 
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2. Find the element of surface d𝑆𝑆 as a function of the parameter differentials d𝑥𝑥 d𝑦𝑦 

Let’s start by calculating 𝐍𝐍: 

𝐍𝐍 =
∂𝐫𝐫
∂𝑥𝑥

×
∂𝐫𝐫
∂𝑦𝑦

= 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

�� = 𝐱𝐱� �0 𝑥𝑥
1 −1� + 𝐲𝐲� � 𝑥𝑥 1

−1 0� + 𝐳𝐳� �1 0
0 1�

= −𝑥𝑥 𝐱𝐱� + 𝐲𝐲� + 𝐳𝐳� 

Therefore: 

d𝑆𝑆 = ‖𝐍𝐍‖ d𝑥𝑥 d𝑦𝑦 = �𝑥𝑥2 + 12 + 12 d𝑥𝑥 d𝑦𝑦 = �𝑥𝑥2 + 2 d𝑥𝑥 d𝑦𝑦 

 

3. Perform the integration over the 𝑥𝑥𝑦𝑦 parameter space (iterated integral with variable limits). I 
choose to integrate 𝑦𝑦 first, so the limits will be 0 to 3𝑥𝑥. Then 𝑥𝑥 will be integrated from 0 to 2. 

𝐴𝐴 = �d𝑆𝑆
 

𝑆𝑆
= � � �𝑥𝑥2 + 2 d𝑦𝑦 d𝑥𝑥�����������

d𝑆𝑆

3𝑥𝑥

0

2

0
= � �� (𝑥𝑥2 + 2)1/2 d𝑦𝑦

3𝑥𝑥

0
�

2

0
 d𝑥𝑥 

We cannot do separation of the integrals because the limits are not constants, we need to do the 
iterated integrals: 

𝐴𝐴 = � �𝑦𝑦(𝑥𝑥2 + 2)
1
2�
𝑦𝑦=0

𝑦𝑦=3𝑥𝑥2

0
 d𝑥𝑥 = � 3𝑥𝑥(𝑥𝑥2 + 2)

1
2

2

0
 d𝑥𝑥 = �(𝑥𝑥2 + 2)

3
2�
0

2
= 6√6 

 

SURFACE INTEGRALS OF VECTOR INTEGRANDS 

15) Find the centre of mass of a hemispherical dome (the hemispherical shell 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑎𝑎2, 
𝑧𝑧 ≥ 0) with constant density 

Solution: 

The centre of mass (given that the density is constant) can be calculated as the average of the position 
vector in the entire surface: 

𝐫𝐫0 = �
𝑥𝑥0
𝑦𝑦0
𝑧𝑧0
� =

∬ 𝐫𝐫 d𝑆𝑆 
𝑆𝑆
∬ d𝑆𝑆 
𝑆𝑆

 

 

1. Decide the parametrization of the surface 𝑆𝑆.  

Clearly this integration is well suited for spherical coordinates: 

𝐫𝐫(𝜃𝜃,𝜙𝜙) = (𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙 ,𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙 , 𝑎𝑎 cos𝜃𝜃)𝑇𝑇 with parameters 𝜃𝜃 ∈ [0, 𝜋𝜋
2

] and 𝜙𝜙 ∈ [0,2𝜋𝜋]. 

2. Find the differential of surface in terms of d𝜃𝜃 d𝜙𝜙. These are spherical coordinates, so we look it up: 

d𝑆𝑆 = 𝑎𝑎2 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙 
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3. Calculate the denominator integral (the total surface of the hemisphere) 

�d𝑆𝑆
 

𝑆𝑆
= � � 𝑎𝑎2 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙

𝜋𝜋/2

0

2𝜋𝜋

0
= (separation) = 𝑎𝑎2 � d𝜙𝜙

2𝜋𝜋

0
� sin𝜃𝜃 d𝜃𝜃
𝜋𝜋/2

0
= 2𝜋𝜋𝑎𝑎2[− cos 𝜃𝜃]0

𝜋𝜋/2

= 2𝜋𝜋𝑎𝑎2 

4. Calculate the numerator integral. It is a vector, so apply linearity: 

�𝐫𝐫 d𝑆𝑆
 

𝑆𝑆
= � �

𝑥𝑥
𝑦𝑦
𝑧𝑧
�  d𝑆𝑆

 

𝑆𝑆
= � (𝑥𝑥 𝐱𝐱� + 𝑦𝑦 𝐲𝐲� + 𝑧𝑧 𝐳𝐳�) d𝑆𝑆

 

𝑆𝑆
= 𝐱𝐱��𝑥𝑥 d𝑆𝑆

 

𝑆𝑆
+ 𝐲𝐲��𝑦𝑦 d𝑆𝑆

 

𝑆𝑆
+ 𝐳𝐳��𝑧𝑧 d𝑆𝑆

 

𝑆𝑆
 

(i.e. calculate the integral component by component). Remember that the integrand containing 𝑥𝑥, 𝑦𝑦 
and 𝑧𝑧 needs to be evaluated at the surface, so we need to write them in terms of the parametric 
surface, i.e. (𝑥𝑥 = 𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙 ,𝑦𝑦 = 𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙 , 𝑧𝑧 =  𝑎𝑎 cos 𝜃𝜃). 

�𝑥𝑥 d𝑆𝑆
 

𝑆𝑆
= � � 𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙���������

𝑥𝑥
 𝑎𝑎2 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙���������

d𝑆𝑆

𝜋𝜋
2

0

2𝜋𝜋

0
= 𝑎𝑎2 � cos𝜙𝜙 d𝜙𝜙

2𝜋𝜋

0���������
0

� sin2 𝜃𝜃 d𝜃𝜃
𝜋𝜋
2

0
= 0 

�𝑦𝑦 d𝑆𝑆
 

𝑆𝑆
= � � 𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙���������

𝑦𝑦
 𝑎𝑎2 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙���������

d𝑆𝑆

𝜋𝜋/2

0

2𝜋𝜋

0
= 𝑎𝑎2 � sin𝜙𝜙 d𝜙𝜙

2𝜋𝜋

0���������
0

� sin2 𝜃𝜃 d𝜃𝜃
𝜋𝜋/2

0
= 0 

�𝑧𝑧 d𝑆𝑆
 

𝑆𝑆
= � � 𝑎𝑎 cos 𝜃𝜃�����

𝑧𝑧
 𝑎𝑎2 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙���������

d𝑆𝑆

𝜋𝜋/2

0

2𝜋𝜋

0
= 𝑎𝑎3 � d𝜙𝜙

2𝜋𝜋

0�����
2𝜋𝜋

� cos 𝜃𝜃 sin𝜃𝜃 d𝜃𝜃
𝜋𝜋/2

0�������������

�12 sin
2 𝜃𝜃�

0

𝜋𝜋/2
=12

= 𝑎𝑎3𝜋𝜋 

So that we can finally substitute into the equation for the centre of mass: 

𝐫𝐫0 =
∬ 𝐫𝐫 d𝑆𝑆 
𝑆𝑆
∬ d𝑆𝑆 
𝑆𝑆

=
0𝐱𝐱� + 0𝐱𝐱� + 𝑎𝑎3𝜋𝜋𝐳𝐳�

2𝜋𝜋𝑎𝑎2
=
𝑎𝑎
2
𝐳𝐳� = �

0
0
𝑎𝑎/2

� 
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CALCULATION OF FLUX: 

16) Calculate the flux ∬ 𝐅𝐅 ⋅ d𝐒𝐒 
𝑆𝑆  of the vector field 𝐅𝐅 = 𝑥𝑥 𝐲𝐲� − 𝑦𝑦 𝐱𝐱� across the surface 

 𝐫𝐫(𝑢𝑢, 𝑣𝑣) = (𝑢𝑢, 1 − 𝑢𝑢, 𝑣𝑣) for 𝑢𝑢 ∈ [0,1] and 𝑣𝑣 ∈ [0,1]. Define flux as outward from the origin. 

Solution: 

1. Parametrize the surface. Already provided in the question 

𝐫𝐫(𝑢𝑢, 𝑣𝑣) = �
𝑢𝑢

1 − 𝑢𝑢
𝑣𝑣

� with 𝑢𝑢 ∈ [0,1] and 𝑣𝑣 ∈ [0,1] (first octant) 

This is a square-shaped region of a plane parallel to 𝑧𝑧 and diagonal in 𝑥𝑥𝑦𝑦. Looking from above: 

 

2. Find the surface differential. 

Start by calculating the normal vector: 

𝐍𝐍 = �
�

𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

�
� = 𝐱𝐱� �

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

� + 𝐲𝐲� �

𝜕𝜕𝑧𝑧
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
𝜕𝜕𝑣𝑣

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

� + 𝐳𝐳� �

𝜕𝜕𝑥𝑥
𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
𝜕𝜕𝑣𝑣

�

= 𝐱𝐱� �−1 0
0 1� + 𝐲𝐲� �0 1

1 0� + 𝐳𝐳� �1 −1
0 0 � = −𝐱𝐱� − 𝐲𝐲� 

This unit vector is pointing inward, but the question specifically requests calculating the flux “outward” 
from the origin. The normal to a surface has an arbitrary sign, so we can just change the sign: 

𝐍𝐍 = 𝐱𝐱� + 𝐲𝐲� 

Therefore 

d𝐒𝐒 = 𝐍𝐍 d𝑢𝑢 d𝑣𝑣 = (𝐱𝐱� + 𝐲𝐲�) d𝑢𝑢 d𝑣𝑣 

3. Find the integrand (it must be a scalar differential, the dot product of 𝐅𝐅 ⋅ d𝐒𝐒) 

𝐅𝐅 ⋅ d𝐒𝐒 = (𝑥𝑥 𝐲𝐲� − 𝑦𝑦 𝐱𝐱� ) ⋅ (𝐱𝐱� + 𝐲𝐲�) d𝑢𝑢 d𝑣𝑣 = (−𝑦𝑦 + 𝑥𝑥) d𝑢𝑢 d𝑣𝑣 

The integrand needs to be evaluated at the surface, so we substitute the parametric equation of the 
surface 𝑥𝑥 = 𝑢𝑢 and 𝑦𝑦 = 1 − 𝑢𝑢 

𝐅𝐅 ⋅ d𝐒𝐒 = (2𝑢𝑢 − 1)d𝑢𝑢 d𝑣𝑣 
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Which is in the form we need it. A scalar differential function of the parameters which can now be 
integrated. 

4. Calculate the flux scalar integral 

�𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆
= � � (2𝑢𝑢 − 1)d𝑢𝑢 d𝑣𝑣

1

0

1

0
= � d𝑣𝑣

1

0
� (2𝑢𝑢 − 1)d𝑢𝑢
1

0
= [𝑢𝑢2 − 𝑢𝑢]01 = 0 

There is no net flux. i.e. as much field is flowing in one direction as in the other.  

This was easy to guess from the diagram! 

 

17) Calculate the flux ∬ 𝐅𝐅 ⋅ d𝐒𝐒 
𝑆𝑆  over the outward surface of the unit sphere centred at the origin, 

where the vector field is 𝐅𝐅(𝐫𝐫) = 𝐫𝐫. 

Solution: 

1. Find the parametrization of the surface: 

We use spherical coordinates for the surface: 𝐫𝐫 = (sin𝜃𝜃 cos𝜙𝜙 , sin𝜃𝜃 sin𝜙𝜙 , cos𝜃𝜃)𝑇𝑇 with 𝜃𝜃 ∈ [0,𝜋𝜋] 
and 𝜙𝜙 ∈ [0,2𝜋𝜋]. 

2. Find the surface element: 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜃𝜃

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜃𝜃

𝜕𝜕𝑥𝑥
𝜕𝜕𝜃𝜃

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜃𝜃

𝜕𝜕𝑦𝑦
𝜕𝜕𝜃𝜃

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

��

= 𝐱𝐱� �cos 𝜃𝜃 sin𝜙𝜙 − sin𝜃𝜃
sin𝜃𝜃 cos𝜙𝜙 0 � + 𝐲𝐲� �− sin𝜃𝜃 cos 𝜃𝜃 cos𝜙𝜙

0 − sin𝜃𝜃 sin𝜙𝜙�

+ 𝐳𝐳� � cos𝜃𝜃 cos𝜙𝜙 cos 𝜃𝜃 sin𝜙𝜙
− sin𝜃𝜃 sin𝜙𝜙 sin𝜃𝜃 cos𝜙𝜙�

= 𝐱𝐱�(sin2 𝜃𝜃 cos𝜙𝜙) + 𝐲𝐲�(sin2 𝜃𝜃 sin𝜙𝜙) + 𝐳𝐳��cos𝜃𝜃 sin𝜃𝜃 (cos2 𝜙𝜙 + sin2 𝜙𝜙)�
= 𝐱𝐱�(sin2 𝜃𝜃 cos𝜙𝜙) + 𝐲𝐲�(sin2 𝜃𝜃 sin𝜙𝜙) + 𝐳𝐳�(cos 𝜃𝜃 sin𝜃𝜃)
= �𝐱𝐱�(sin𝜃𝜃 cos𝜙𝜙) + 𝐲𝐲�(sin𝜃𝜃 sin𝜙𝜙) + 𝐳𝐳�(cos 𝜃𝜃)� sin𝜃𝜃 

Therefore: 

d𝐒𝐒 = 𝐍𝐍 d𝜃𝜃 d𝜙𝜙 = �𝐱𝐱�(sin𝜃𝜃 cos𝜙𝜙) + 𝐲𝐲�(sin𝜃𝜃 sin𝜙𝜙) + 𝐳𝐳�(cos𝜃𝜃)� sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙 

3. Find the scalar integrand (perform the dot product 𝐅𝐅 ⋅ d𝐒𝐒) in terms of the parameters.  

𝐅𝐅 ⋅ d𝐒𝐒 = (𝑥𝑥 𝐱𝐱� + 𝑦𝑦 𝐲𝐲� + 𝑧𝑧 𝐳𝐳�) ⋅ ��𝐱𝐱�(sin𝜃𝜃 cos𝜙𝜙) + 𝐲𝐲�(sin𝜃𝜃 sin𝜙𝜙) + 𝐳𝐳�(cos𝜃𝜃)� sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙� 

We need to evaluate the vector field at the surface, so we need to substitute the parametric equation 
for the surface into 𝑥𝑥,𝑦𝑦, 𝑧𝑧: 

𝐅𝐅 ⋅ d𝐒𝐒 = (sin𝜃𝜃 cos𝜙𝜙  𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙  𝐲𝐲� + cos 𝜃𝜃  𝐳𝐳�)
⋅ ��𝐱𝐱�(sin𝜃𝜃 cos𝜙𝜙) + 𝐲𝐲�(sin𝜃𝜃 sin𝜙𝜙) + 𝐳𝐳�(cos𝜃𝜃)� sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙�
= (sin2 𝜃𝜃 cos2 𝜙𝜙 + sin2 𝜃𝜃 sin2 𝜙𝜙 + cos2 𝜃𝜃) sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙
= (sin2 𝜃𝜃 (cos2 𝜙𝜙 + sin2 𝜙𝜙) + cos2 𝜃𝜃) sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙 = sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙 
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4. Perform the scalar double integration: 

�𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆
= � � sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙

𝜋𝜋

0

2𝜋𝜋

0
= � d𝜙𝜙

2𝜋𝜋

0
� sin𝜃𝜃 d𝜃𝜃
𝜋𝜋

0
= 2𝜋𝜋[− cos𝜃𝜃]0𝜋𝜋 = 2𝜋𝜋(− − 1 − −1) = 4𝜋𝜋 

 

 

 

18) Calculate the flux ∬ 𝐅𝐅 ⋅ d𝐒𝐒 
𝑆𝑆  of the vector field 𝐅𝐅 = 𝑧𝑧 𝐳𝐳� across the portion of the sphere 

 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑎𝑎2 in the first octant (𝑥𝑥,𝑦𝑦, 𝑧𝑧 ≥ 0). Define the flux as outward (away from the 
origin). 

Solution: 

1. Parametrize the surface. Clearly this surface is perfectly suited for spherical coordinates 

𝐫𝐫(𝜃𝜃,𝜙𝜙) = �
𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙
𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙
𝑎𝑎 cos 𝜃𝜃

� with 𝜃𝜃 ∈ [0, 𝜋𝜋
2

] and 𝜙𝜙 ∈ [0,𝜋𝜋/2] (first octant) 

2. Find the differential surface. 

Follow steps in previous problem with 𝑟𝑟 = 𝑎𝑎, or you can look it up in the table of differentials provided 
in the exam. Differential for spherical coordinates in the radial direction is: 

d𝐒𝐒 = 𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 𝐞𝐞�𝑟𝑟 (pointing outward) 

3. Find the integrand (it must be a scalar differential, the dot product of 𝐅𝐅 ⋅ d𝐒𝐒) 

𝐅𝐅 ⋅ d𝐒𝐒 = (𝑧𝑧 𝐳𝐳�) ⋅ (𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 𝐞𝐞�𝑟𝑟) 

We need to find this integrand as a scalar function of the parameters only 𝑓𝑓(𝜃𝜃,𝜙𝜙)d𝜙𝜙 d𝜃𝜃 . Therefore, 
we need to substitute 𝑧𝑧 = 𝑎𝑎 cos𝜃𝜃. 

𝐅𝐅 ⋅ d𝐒𝐒 = (𝑎𝑎 cos 𝜃𝜃  𝐳𝐳�) ⋅ (𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 𝐞𝐞�𝑟𝑟) 

We also need to evaluate the dot product 𝐳𝐳� ⋅ 𝐞𝐞�𝑟𝑟. One method is to look up the unit vector in the 
spherical radial coordinate 𝐞𝐞�𝑟𝑟 = sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐱𝐱� + cos𝜃𝜃 𝐳𝐳�. Another method is to think it 
geometrically. In any case: 𝐳𝐳� ⋅ 𝐞𝐞�𝑟𝑟 = cos𝜃𝜃. So that: 

Easier methods: 

A. To simplify step 3, you could notice that the unit radial vector is present in 𝐍𝐍 =
�𝐱𝐱�(sin𝜃𝜃 cos𝜙𝜙) + 𝐲𝐲�(sin𝜃𝜃 sin𝜙𝜙) + 𝐳𝐳�(cos 𝜃𝜃)� sin𝜃𝜃 = 𝐞𝐞�𝑟𝑟 sin𝜃𝜃 
Such that d𝐒𝐒 = 𝐍𝐍 d𝜃𝜃 d𝜙𝜙 = 𝐞𝐞�𝑟𝑟 sin𝜃𝜃  d𝜃𝜃 d𝜙𝜙, 
Such that 𝐅𝐅 ⋅ d𝐒𝐒 = (𝐫𝐫) ⋅ (𝐞𝐞�𝑟𝑟 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙) = 𝑟𝑟 sin𝜃𝜃 d𝜃𝜃 d𝜙𝜙, which evaluated at 𝑟𝑟 = 1 
gives the correct integrand, so you can directly go to step 4 above. 
 

B. To simplify all steps, you could build d𝐒𝐒 = 𝐧𝐧� d𝑆𝑆 as follows.  
The normal to the surface of a sphere is 𝐧𝐧� = 𝐞𝐞�𝑟𝑟,  
The vector field is 𝐅𝐅 = 𝐫𝐫 = 𝑟𝑟𝐞𝐞�𝑟𝑟  
The integrand is 𝐅𝐅 ⋅ d𝐒𝐒 = 𝐅𝐅 ⋅ 𝐧𝐧� d𝑆𝑆 = 𝑟𝑟 d𝑆𝑆, which evaluated at 𝑟𝑟 = 1 is simply d𝑆𝑆 
Hence, ∬ 𝐅𝐅 ⋅ d𝐒𝐒 

𝑆𝑆 = ∬ d𝑆𝑆 
𝑆𝑆 = (surface of unit sphere) = 4𝜋𝜋 
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𝐅𝐅 ⋅ d𝐒𝐒 = (𝑎𝑎 cos 𝜃𝜃)(𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃)(cos𝜃𝜃) = 𝑎𝑎3 cos2 𝜃𝜃 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 

Which is in the form we need it. A scalar function of the two parameters which can now be 
integrated. 

4. Calculate the flux scalar integral 

�𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆
= � � 𝑎𝑎3 cos2 𝜃𝜃 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃

𝜋𝜋/2

0

𝜋𝜋/2

0
= 𝑎𝑎3 � d𝜙𝜙

𝜋𝜋/2

0
� cos2 𝜃𝜃 sin𝜃𝜃 d𝜃𝜃
𝜋𝜋/2

0

= 𝑎𝑎3 �
𝜋𝜋
2
� �−

1
3

cos3 𝜃𝜃�
0

𝜋𝜋
2

=
𝑎𝑎3𝜋𝜋

6
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19) Calculate the flux ∬ 𝐅𝐅 ⋅ d𝐒𝐒 
𝑆𝑆  of the vector field 𝐅𝐅 = −𝑦𝑦 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�  across the portion of the 

sphere 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑎𝑎2 in the first octant (𝑥𝑥,𝑦𝑦, 𝑧𝑧 ≥ 0). Define the flux as outward (away 
from the origin). 

Solution: 

1. Parametrize the surface. Clearly this surface is perfectly suited for spherical coordinates 

𝐫𝐫(𝜃𝜃,𝜙𝜙) = �
𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙
𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙
𝑎𝑎 cos 𝜃𝜃

� with 𝜃𝜃 ∈ [0, 𝜋𝜋
2

] and 𝜙𝜙 ∈ [0,𝜋𝜋/2] (first octant) 

2. Find the differential surface. 

We have done this in previous problems, or you can look it up in the table of differentials provided in 
the exam. Differential for spherical coordinates in the radial direction is: 

d𝐒𝐒 = 𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 𝐞𝐞�𝑟𝑟 (pointing outward) 

3. Find the integrand (it must be a scalar differential, the dot product of 𝐅𝐅 ⋅ d𝐒𝐒) 

𝐅𝐅 ⋅ d𝐒𝐒 = (−𝑦𝑦 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�) ⋅ (𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 𝐞𝐞�𝑟𝑟) 

We need to find this integrand as a scalar function of the parameters only 𝑓𝑓(𝜃𝜃,𝜙𝜙)d𝜙𝜙 d𝜃𝜃 . Therefore, 
we need to substitute 𝑥𝑥 = 𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙 and 𝑦𝑦 = 𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙. 

𝐅𝐅 ⋅ d𝐒𝐒 = (−𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙  𝐱𝐱�  + 𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙  𝐲𝐲�) ⋅ (𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 𝐞𝐞�𝑟𝑟) 

We also need to evaluate the dot product with 𝐞𝐞�𝑟𝑟. We can look up the unit vector in the spherical 
radial coordinate 𝐞𝐞�𝑟𝑟 = sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐱𝐱� + cos 𝜃𝜃 𝐳𝐳�.  

𝐅𝐅 ⋅ d𝐒𝐒 = (−𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙  𝐱𝐱�  + 𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙  𝐲𝐲�)
⋅ �𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃 (sin𝜃𝜃 cos𝜙𝜙 𝐱𝐱� + sin𝜃𝜃 sin𝜙𝜙 𝐱𝐱� + cos 𝜃𝜃 𝐳𝐳�)� 

= (−𝑎𝑎 sin𝜃𝜃 sin𝜙𝜙)(𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃)(sin𝜃𝜃 cos𝜙𝜙) + (𝑎𝑎 sin𝜃𝜃 cos𝜙𝜙)(𝑎𝑎2 sin𝜃𝜃 d𝜙𝜙 d𝜃𝜃)(sin𝜃𝜃 sin𝜙𝜙)
= 𝑎𝑎3 sin3 𝜃𝜃 (− sin𝜙𝜙 cos𝜙𝜙 + sin𝜙𝜙 cos𝜙𝜙)d𝜙𝜙 d𝜃𝜃 = 0 d𝜙𝜙 d𝜃𝜃 

 

4. Calculate the flux scalar integral: 

∬ 𝐅𝐅 ⋅ d𝐒𝐒 
𝑆𝑆 = 0  

This would have been easy to find if we had parametrized the surface in rectangular coordinates: 

𝐫𝐫(𝑥𝑥,𝑦𝑦) = �
𝑥𝑥
𝑦𝑦

�𝑥𝑥2 + 𝑦𝑦2
� 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

�� = 𝐱𝐱� �
0

𝑥𝑥
√⋅

1
𝑦𝑦
√⋅

� + 𝐲𝐲� �

𝑥𝑥
√⋅

1

𝑦𝑦
√⋅

0
� + 𝐳𝐳� �1 0

0 1�

=
−𝐱𝐱�𝑥𝑥 − 𝐲𝐲�𝑦𝑦
�𝑥𝑥2 + 𝑦𝑦2

+ 𝐳𝐳� 

So that 𝐅𝐅 ⋅  𝐍𝐍 = (𝑦𝑦𝑥𝑥 − 𝑥𝑥𝑦𝑦)/�𝑥𝑥2 + 𝑦𝑦2 = 0 
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20) Calculate the flux of the vector field 𝐅𝐅 = (𝑥𝑥2𝑧𝑧, 𝑥𝑥𝑦𝑦2, 𝑧𝑧) through the outer surface of 
 𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2, 0 ≤ 𝑧𝑧 ≤ 1, 𝑥𝑥 ≥ 0 and 𝑦𝑦 ≥ 0. 

Solution:  

1. Parametrise the surface.  

It is a paraboloid. There is no single right way of doing this, there are many ways.  

Option 1: We could go for the parametrization (see later for a solution in this case): 

𝐫𝐫 = �
𝑢𝑢
𝑣𝑣

𝑢𝑢2 + 𝑣𝑣2
� 

Option 2: The rotational symmetry of the surface suggests it would be easier if we used the polar angle 
𝑢𝑢 = 𝜙𝜙 as one parameter, and some other parameter that moves us up and down the parabola. For 
example, we could use 𝑧𝑧 as parameter.  

𝐫𝐫 = �
√𝑧𝑧 cos𝜙𝜙
√𝑧𝑧 sin𝜙𝜙

𝑧𝑧
� 

 

Option 3: Alternatively, we could use the radial coordinate 𝜌𝜌 = √𝑧𝑧 to move us up and down the 
parabola, which would allow us to remove the square roots: 

𝐫𝐫 = �
𝜌𝜌 cos𝜙𝜙
𝜌𝜌 sin𝜙𝜙
𝜌𝜌2

� 
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Any of the above would be a valid parametrization of the surface. Let’s use Option 3. The parameters 
must be integrated in the region 𝜌𝜌 ∈ [0,1] and 𝜙𝜙 = [0,𝜋𝜋/2]. 

2. Obtain the vector surface element d𝐒𝐒 

In this case I consider it too risky to obtain d𝑆𝑆 by physical intuition. So, I directly use the definition of 
the vector 𝐍𝐍 for this paraboloid. 

𝐍𝐍 = 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜌𝜌

𝜕𝜕𝑧𝑧
𝜕𝜕𝜌𝜌

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑧𝑧
𝜕𝜕𝜌𝜌

𝜕𝜕𝑥𝑥
𝜕𝜕𝜌𝜌

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙

𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙

𝜕𝜕𝑥𝑥
𝜕𝜕𝜌𝜌

𝜕𝜕𝑦𝑦
𝜕𝜕𝜌𝜌

��

= 𝐱𝐱� �𝜌𝜌 cos𝜙𝜙 0
sin𝜙𝜙 2𝜌𝜌� + 𝐲𝐲� � 0 −𝜌𝜌 sin𝜙𝜙

2𝜌𝜌 cos𝜙𝜙 � + 𝐳𝐳� �−𝜌𝜌 sin𝜙𝜙 𝜌𝜌 cos𝜙𝜙
cos𝜙𝜙 sin𝜙𝜙 �

= 𝐱𝐱�2𝜌𝜌2 cos𝜙𝜙 + 𝐲𝐲�2𝜌𝜌2 sin𝜙𝜙 + 𝐳𝐳�(−𝜌𝜌 sin2 𝜙𝜙 − 𝜌𝜌 cos2 𝜙𝜙) = 2𝜌𝜌2𝐞𝐞�𝜌𝜌 − 𝜌𝜌𝐳𝐳� 

The surface vector differential element is therefore d𝐒𝐒 = 𝐍𝐍 d𝜌𝜌 d𝜙𝜙 = �2𝜌𝜌2𝐞𝐞�𝜌𝜌 − 𝜌𝜌𝐳𝐳��d𝜌𝜌 d𝜙𝜙 

 

For completeness, let’s calculate here the scalar surface element d𝑆𝑆 and the normal vector, to see 
why this mathematical form for d𝐒𝐒 makes sense geometrically: 

d𝑆𝑆 = ‖𝐍𝐍‖ d𝜌𝜌 d𝜙𝜙 = �4𝜌𝜌4 + 𝜌𝜌2 d𝜌𝜌 d𝜙𝜙 = 𝜌𝜌�4𝜌𝜌2 + 1 d𝜌𝜌 d𝜙𝜙 

𝐧𝐧� =
𝐍𝐍
‖𝐍𝐍‖

=
2𝜌𝜌2𝐞𝐞�𝜌𝜌 − 𝜌𝜌𝐳𝐳�

𝜌𝜌�4𝜌𝜌2 + 1
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3. Find the scalar integrand (do the dot product 𝐅𝐅 ⋅ d𝐒𝐒). Remember that the integrand must be written 
in terms of the parameters. 

So first we need to substitute (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in terms of the parameters (𝜌𝜌,𝜙𝜙) in the vector field: 

𝐅𝐅 = (𝑥𝑥2𝑧𝑧, 𝑥𝑥𝑦𝑦2, 𝑧𝑧) = (𝜌𝜌4 cos2 𝜙𝜙 ,𝜌𝜌3 cos𝜙𝜙 sin2 𝜙𝜙 ,𝜌𝜌2) 

Now we do the dot product: 

𝐅𝐅 ⋅ d𝐒𝐒 = 𝐅𝐅 ⋅ 𝐍𝐍 d𝜌𝜌 d𝜙𝜙�����
d𝐒𝐒

= �
𝜌𝜌4 cos2 𝜙𝜙

𝜌𝜌3 cos𝜙𝜙 sin2 𝜙𝜙
𝜌𝜌2

� ⋅ �
2𝜌𝜌2 cos𝜙𝜙
2𝜌𝜌2 sin𝜙𝜙

−𝜌𝜌
�d𝜌𝜌 d𝜙𝜙

= 2𝜌𝜌6 cos3 𝜙𝜙 + 2𝜌𝜌5 cos𝜙𝜙 sin3 𝜙𝜙 − 𝜌𝜌3 

(Note that we could have done 𝐅𝐅 ⋅ 𝐧𝐧� d𝑆𝑆 and get the same result. But doing it directly with 𝐅𝐅 ⋅ d𝐒𝐒 saved 
us from the ugly square roots needed to calculate ‖𝐍𝐍‖ which eventually cancel out anyway because 
they appear dividing in 𝐧𝐧� but multiplying in d𝑆𝑆) 

4. Calculate the double scalar integral. 

Φ = � 𝐅𝐅 ⋅ d𝐒𝐒 ���
scalar d𝜙𝜙

 

𝑆𝑆
= � (2𝜌𝜌6 cos3 𝜙𝜙 + 2𝜌𝜌5 cos𝜙𝜙 sin3 𝜙𝜙 − 𝜌𝜌3) d𝜌𝜌 d𝜙𝜙

 

𝑆𝑆(𝜌𝜌𝜙𝜙)

 

 
Linearity of the integration allows us to split this integral into three different double integrals, each of 
which can be split into the angular and the radial part by separation: 

= �� cos3 𝜙𝜙 d𝜙𝜙
𝜋𝜋
2

0
� �� 2𝜌𝜌6

1

0
d𝜌𝜌� + �� cos𝜙𝜙 sin3 𝜙𝜙 d𝜙𝜙

𝜋𝜋
2

0
� �� 2𝜌𝜌5

1

0
d𝜌𝜌� − �� d𝜙𝜙

𝜋𝜋
2

0
� �� 𝜌𝜌3

1

0
d𝜌𝜌� 

 
We can do each of these integrals: 
 

� cos3 𝜙𝜙 d𝜙𝜙
𝜋𝜋
2

0
= � cos𝜙𝜙 cos2 𝜙𝜙 d𝜙𝜙

𝜋𝜋
2

0
= � cos𝜙𝜙 (1 − sin2 𝜙𝜙)d𝜙𝜙

𝜋𝜋
2

0

= � cos𝜙𝜙 d𝜙𝜙
𝜋𝜋
2

0
− � cos𝜙𝜙 sin2 𝜙𝜙 d𝜙𝜙

𝜋𝜋
2

0
= (sin𝜙𝜙)𝜙𝜙=0

𝜙𝜙=𝜋𝜋2 − �
1
3

sin3 𝜙𝜙�
𝜙𝜙=0

𝜙𝜙=𝜋𝜋2
= 1 −

1
3

=
2
3

 

� 2𝜌𝜌6
1

0
d𝜌𝜌 = �

2
7
𝜌𝜌7�

𝜌𝜌=0

𝜌𝜌=1
=

2
7

 

� cos𝜙𝜙 sin3 𝜙𝜙 d𝜙𝜙
𝜋𝜋
2

0
= �

1
4

sin4 𝜙𝜙�
𝜙𝜙=0

𝜙𝜙=𝜋𝜋2
=

1
4

 

� 2𝜌𝜌5
1

0
d𝜌𝜌 =

1
3
�

2
6
𝜌𝜌6�

𝜌𝜌=0

𝜌𝜌=1
=

1
3

 

� d𝜙𝜙
𝜋𝜋
2

0
=
𝜋𝜋
2

 

� 𝜌𝜌3
1

0
d𝜌𝜌 =

1
4

 

 
So, putting it all together, we arrive at the answer: 

Φ = �
2
3
� �

2
7
� + �

1
4
� �

1
3
� − �

𝜋𝜋
2
� �

1
4
� =

4
21

+
1

12
−
𝜋𝜋
8

=
23
84

−
𝜋𝜋
8
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4.3 (30) 

Let’s repeat the problem but using Option 1 for the parametrization of the surface: The cartesian 
parameters will make it easy to find the dot product, but the limits of integration will be a disk, making 
the evaluation of the integral more challenging: 
 
1. Parametrize the surface: 
 

𝐫𝐫 = �
𝑥𝑥
𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2
� 

2. Find the surface element. The normal vector is: 
 

𝐍𝐍 =
∂𝐫𝐫
∂𝑥𝑥

×
∂𝐫𝐫
∂𝑦𝑦

= 𝐱𝐱� ��

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

�� + 𝐲𝐲� ��

𝜕𝜕𝑧𝑧
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

�� + 𝐳𝐳� ��

𝜕𝜕𝑥𝑥
𝜕𝜕𝑥𝑥

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥

𝜕𝜕𝑥𝑥
𝜕𝜕𝑦𝑦

𝜕𝜕𝑦𝑦
𝜕𝜕𝑦𝑦

�� = 𝐱𝐱� �0 2𝑥𝑥
1 2𝑦𝑦� + 𝐲𝐲� �2𝑥𝑥 1

2𝑦𝑦 0� + 𝐳𝐳� �1 0
0 1�

= −2𝑥𝑥 𝐱𝐱� − 2𝑦𝑦 𝐲𝐲� + 𝐳𝐳� 

Therefore: 

d𝐒𝐒 = 𝐍𝐍 d𝑥𝑥 d𝑦𝑦 = (−2𝑥𝑥 𝐱𝐱� − 2𝑦𝑦 𝐲𝐲� + 𝐳𝐳�) d𝑥𝑥 d𝑦𝑦 

Notice that this has given us an orientation of the vector that is opposite to the one we got earlier. 
This one is pointing toward the inside of the paraboloid. A surface has, of course, two possible 
definitions of the normal vector. The flux will change sign depending on this arbitrary choice (i.e. 
calculating the flux from one side into the other, or vice versa).  

3. Find the scalar integrand (do the dot product 𝐅𝐅 ⋅ d𝐒𝐒) 

𝐅𝐅 ⋅ d𝐒𝐒 = (𝑥𝑥2𝑧𝑧, 𝑥𝑥𝑦𝑦2, 𝑧𝑧) = �
𝑥𝑥2𝑧𝑧
𝑥𝑥𝑦𝑦2
𝑧𝑧
� ⋅ �

−2𝑥𝑥
−2𝑦𝑦

1
� d𝑥𝑥 d𝑦𝑦 = (−2𝑥𝑥3𝑧𝑧 − 2𝑥𝑥𝑦𝑦3 + 𝑧𝑧) d𝑥𝑥 d𝑦𝑦 

But we must write 𝑧𝑧 in terms of the parameters 𝑥𝑥, 𝑦𝑦, so that we substitute 𝑧𝑧 = 𝑥𝑥2 + 𝑦𝑦2. 

𝐅𝐅 ⋅ d𝐒𝐒 = (−2𝑥𝑥5 − 2𝑥𝑥3𝑦𝑦2 − 2𝑥𝑥𝑦𝑦3 + 𝑥𝑥2 + 𝑦𝑦2) d𝑥𝑥 d𝑦𝑦 

4. Perform the double scalar integration. 

Find the limits of integration. In the 𝑥𝑥𝑦𝑦 parameter space, the limits of integration are the first quadrant 
of the unit disk centred in the origin. 

Φ = �𝐅𝐅 ⋅ d𝐒𝐒 
 

𝑆𝑆
= � �� (−2𝑥𝑥5 − 2𝑥𝑥3𝑦𝑦2 − 2𝑥𝑥𝑦𝑦3 + 𝑥𝑥2 + 𝑦𝑦2) d𝑥𝑥

�1−𝑦𝑦2

0
�

1

0
 d𝑦𝑦 

This might be solvable with care and labour, but it seems easier to change the double integration into 
polar coordinates by using a change of variables, 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙 ,𝑦𝑦 = 𝜌𝜌 sin𝜙𝜙 and don’t forget the 
Jacobian d𝑥𝑥 d𝑦𝑦 = 𝜌𝜌 d𝜌𝜌 d𝜙𝜙: 

Φ = � �� (−2𝜌𝜌6 cos3 𝜙𝜙 − 2𝜌𝜌5 cos𝜙𝜙 sin3 𝜙𝜙 + 𝜌𝜌3) d𝜌𝜌
1

0
�

𝜋𝜋/2

0
 d𝜙𝜙 

which is exactly the integration we solved when parametrizing the surface in cylindrical coordinates 
(but with an opposite sign, due to the arbitrary flip in 𝐍𝐍). 
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4.4 LINE INTEGRALS 

In the same way we can do double integrals in curves surfaces, we can do simple integrals along curved 
paths: these are called line integrals 

A. PARAMETRIZED CURVES 

 

Examples of parametrized curves: 

𝐫𝐫(𝑢𝑢) = (𝑅𝑅 cos𝑢𝑢 ,𝑅𝑅 sin𝑢𝑢 , 0) 𝐫𝐫(𝑢𝑢) = (𝑢𝑢 cos𝑢𝑢 ,𝑢𝑢 sin𝑢𝑢 , 0) 𝐫𝐫(𝑢𝑢) = (𝑅𝑅 cos𝑢𝑢 ,𝑅𝑅 sin𝑢𝑢 ,𝑢𝑢) 

   
 

Sometimes curves are given in other forms which need to be parametrized. For instance, the curve 
𝑦𝑦 = 𝑥𝑥2 can be parametrized by taking 𝑥𝑥 as parameter: 𝐫𝐫(𝑢𝑢) = (𝑢𝑢,𝑢𝑢2, 0) 

 
TANGENT TO THE CURVE 

 
 

 
 

A curve in 3D space can be specified via a function  
𝐫𝐫: (𝑢𝑢) ↦ (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in a domain 𝑢𝑢 ∈ [𝑎𝑎, 𝑏𝑏]  

which maps the real line segment 𝑢𝑢 ∈ [𝑎𝑎, 𝑏𝑏] into a segment of  
curve in 3-D space 𝐫𝐫(𝑢𝑢) = (𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)) 

 

A vector tangent to the curve 𝐫𝐫(𝑢𝑢) is given by  

𝛕𝛕(𝑢𝑢) =
d𝐫𝐫
d𝑢𝑢

 

• The direction of 𝛕𝛕 tells us the tangent direction. 
• The magnitude of 𝛕𝛕 tells us, locally, the distance moved by 𝐫𝐫 per unit increase in 𝑢𝑢. 
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B. LINE INTEGRAL: INTERPRETATION AND APPLICATIONS 

Consider a parametrized curve 𝐶𝐶 given by the parametric equation 𝐫𝐫(𝑢𝑢) with 𝑢𝑢 ∈ [𝑎𝑎, 𝑏𝑏], and a function 
𝑓𝑓(𝐫𝐫) which can be evaluated at the points on the curve 𝑓𝑓�𝐫𝐫(𝑢𝑢)� → 𝑓𝑓(𝑢𝑢).  

Divide this curve into segments separated by the points corresponding to 𝑢𝑢 = 𝑎𝑎0,𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑁𝑁 (with 
𝑎𝑎0 = 𝑎𝑎 and 𝑎𝑎𝑁𝑁 = 𝑏𝑏). Each segment has a straight-line length ΔL𝑘𝑘 = ‖𝐫𝐫(𝑎𝑎𝑘𝑘) − 𝐫𝐫(𝑎𝑎𝑘𝑘−1)‖. We can 
evaluate 𝑓𝑓(𝐫𝐫) at points along the curve somewhere inside each segment 𝑓𝑓𝑘𝑘 = 𝑓𝑓(𝐫𝐫(𝑐𝑐𝑘𝑘)) where 𝑐𝑐𝑘𝑘 ∈
[𝑎𝑎𝑘𝑘−1,𝑎𝑎𝑘𝑘].  

 

Then consider the following sum: 

�𝑓𝑓𝑘𝑘

𝑁𝑁

𝑖𝑖=1

Δ𝐿𝐿𝑘𝑘 

We are multiplying the length of the segment, by the function 𝑓𝑓(𝐫𝐫) evaluated at 𝐫𝐫 in some point of 
each segment. This can be visualized when the path 𝐫𝐫(𝑢𝑢) is 2-D, because we can use the z axis to 
represent the function  𝑓𝑓(𝑥𝑥,𝑦𝑦) and show how it is sampled at the values 𝑢𝑢 = 𝑐𝑐𝑘𝑘: 

 

Now take the limit when all the segments Δ𝐿𝐿𝑘𝑘 → 0. If the limit exists, it is independent of the 
subdivisions chosen, and the limit is defined as the line integral: 

�𝑓𝑓(𝐫𝐫) d𝑙𝑙
 

𝐶𝐶
 

The line integral lets us add a function over a certain curve. The function can be scalar or a vector. 
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In two dimensions it is easy to give a geometrical meaning to the line integral. The line integral gives 

us the area under the graph 𝑓𝑓(𝑥𝑥,𝑦𝑦) evaluated along the curve 𝐫𝐫(𝑢𝑢) = �𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢)�𝑇𝑇. 

 
 
In three dimensions it is not possible to visualize it. The function is evaluated at each point in the curve 
and all values are added along the curve. We can understand it with examples: 
 
Example applications: 

The length of a curve 𝐶𝐶: 

𝐿𝐿 = �1 d𝑙𝑙
 

𝐶𝐶
 

The mass of a wire following a curve 𝐶𝐶 parametrised with 𝐫𝐫(𝑢𝑢) having a linear density 𝜆𝜆(𝑢𝑢)[kg/m] 

𝑀𝑀 = � 𝜆𝜆(𝑢𝑢)�
[kg/m]

 d𝑙𝑙⏟
[m]

�������
d𝑚𝑚 [kg] 

𝐶𝐶
 

Total force (vector) acting on a wire 𝐶𝐶 (as a function of a “force density” 𝐟𝐟(𝑢𝑢)[𝑁𝑁/𝑚𝑚] acting on each 
differential segment of the wire): 

𝐅𝐅⏟
[N]

=  � 𝐟𝐟(𝑢𝑢)�
[N/m]

d𝑙𝑙⏟
[m]

 

𝐶𝐶
 

Total electric field created at 𝐫𝐫a by a linear wire 𝐶𝐶 carrying a density of charge 𝜆𝜆(𝑢𝑢): 

𝐄𝐄(𝐫𝐫0)���
[𝑁𝑁/𝑐𝑐

=𝑉𝑉/𝑚𝑚 ]

=  � 𝑘𝑘𝑒𝑒�
[N m2 C−2]

𝐞𝐞�𝑟𝑟′
‖𝐫𝐫′‖2���
[m−2]

𝜆𝜆(𝑢𝑢)�
[C/m]

 d𝑙𝑙⏟
[m]

�����
d𝑞𝑞 [C] 

𝐶𝐶
     with     𝐫𝐫′ = 𝐫𝐫0 − 𝐫𝐫(𝑢𝑢) 

Centre of mass of a wire (curve 𝐶𝐶) parametrised with 𝐫𝐫(𝑢𝑢) having a linear density 𝜆𝜆(𝑢𝑢)[kg/m] 

𝐫𝐫CM =
∫ 𝐫𝐫(𝑢𝑢) 𝜆𝜆(𝑢𝑢) d𝑙𝑙 
𝐶𝐶
∫ 𝜆𝜆(𝑢𝑢) d𝑙𝑙 
𝐶𝐶

 

Weighted average of quantity 𝑓𝑓(𝑢𝑢) over the curve 𝐶𝐶 parametrised by 𝐫𝐫(𝑢𝑢), with “weight” 𝑤𝑤(𝑢𝑢) 

𝑓𝑓𝑎𝑎𝑎𝑎𝑤𝑤 =
∫ 𝑓𝑓(𝑢𝑢) 𝑤𝑤(𝑢𝑢) d𝑙𝑙 
𝐶𝐶
∫ 𝑤𝑤(𝑢𝑢) d𝑙𝑙 
𝐶𝐶
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C. LINE INTEGRAL CALCULATION 

 

To perform the integral along the curve 𝐶𝐶, we just need to map the curve in 3D space into a straight 
line in one dimensional 𝑢𝑢-space via a parametrization 𝐫𝐫(𝑢𝑢). The integral is independent on how we 
choose to do this parametrization. Once the curve is parametrized, we can integrate over the 
parameter 𝑢𝑢. To do this, we need to: 

• Find the differential line element d𝑙𝑙 = ‖𝛕𝛕‖d𝑢𝑢 equal to the differential length moved along the 
curve when the parameter is increased from 𝑢𝑢 → 𝑢𝑢 + 𝑑𝑑𝑢𝑢 (Note that this is exactly what the 
magnitude of the tangent vector 𝛕𝛕(𝑢𝑢) = d𝐫𝐫/d𝑢𝑢 is telling us). 

• Evaluate the integrand 𝑓𝑓(𝐫𝐫) on the points along the curve, i.e. 𝑓𝑓(𝐫𝐫(𝑢𝑢)) → 𝑓𝑓(𝑢𝑢) 

Therefore, the general method is: 

 

 

 

 

 

Let’s do some examples: 

1) Calculate the length of the circle of radius 𝑅𝑅 

Solution: We need to integrate d𝑙𝑙 over the circle of radius 𝑅𝑅: 

𝐿𝐿 = � 1 d𝑙𝑙
 

Circle
 

We parametrize the curve using cylindrical coordinates (we can do it in 2D): 

�𝑓𝑓(𝐫𝐫) d𝑙𝑙
 

𝐶𝐶
= � 𝑓𝑓(𝐫𝐫(𝑢𝑢)) �

d𝐫𝐫
d𝑢𝑢
�d𝑢𝑢�����
d𝑙𝑙 

=‖𝛕𝛕(𝑢𝑢)‖ d𝑢𝑢

𝑏𝑏

𝑎𝑎
 

 

1) Find a parametrisation of the curve 𝐫𝐫(𝑢𝑢) = �
𝑥𝑥(𝑢𝑢)
𝑦𝑦(𝑢𝑢)
𝑧𝑧(𝑢𝑢)

� 

2) Find the length differential (also called length element) d𝑙𝑙: 
i. Remember it or look it up (for simple cases) 

ii. Geometrical intuition (consider the length of the segment 𝐫𝐫 → 𝐫𝐫 + d𝐫𝐫 when 
𝑢𝑢 → 𝑢𝑢 + 𝑑𝑑𝑢𝑢). 

iii. Apply the recipe d𝑙𝑙 = ‖d𝐫𝐫‖ = �d𝐫𝐫
d𝑢𝑢
� d𝑢𝑢 

3) Evaluate the integrand function 𝑓𝑓(𝐫𝐫) at the locations on the curve by substituting the 
parametrisation of the curve 𝐫𝐫(𝑢𝑢) into the integrand 𝑓𝑓(𝐫𝐫) (i.e. obtain 𝑓𝑓�𝐫𝐫(𝑢𝑢)� = 𝑓𝑓(𝑢𝑢)) 

4) Calculate the integral in the appropriate limits 𝑢𝑢 ∈ [𝑎𝑎, 𝑏𝑏] 
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𝐫𝐫(𝜙𝜙) = �𝑅𝑅 cos𝜙𝜙
𝑅𝑅 sin𝜙𝜙� with 𝜙𝜙 ∈ [0,2𝜋𝜋] 

The tangent vector is: 

𝛕𝛕(𝜙𝜙) =
d𝐫𝐫
d𝜙𝜙

= �−𝑅𝑅 sin𝜙𝜙
𝑅𝑅 cos𝜙𝜙 � 

Therefore, the differential line element is: 

d𝑙𝑙 = �
d𝐫𝐫
d𝜙𝜙

�d𝜙𝜙 = ‖𝛕𝛕(𝜙𝜙)‖ d𝜙𝜙 = �(𝑅𝑅 sin𝜙𝜙)2 + (𝑅𝑅 cos𝜙𝜙)2 d𝜙𝜙 = 𝑅𝑅 d𝜙𝜙 

So, we can do the integral in 𝜙𝜙 ∈ [0,2𝜋𝜋] 

𝐿𝐿 = � 1 d𝑙𝑙
 

Circle
= � 𝑅𝑅 d𝜙𝜙

2𝜋𝜋

0
= 2𝜋𝜋𝑅𝑅 

 

2) Determine the length of the spiral given in polar coordinates as 𝜌𝜌 = 𝑒𝑒−𝜙𝜙/4, with 𝜙𝜙 ∈ [0,∞]. 

Solution: 

 

We need to integrate d𝑙𝑙 over the spiral: 

𝐿𝐿 = � 1 d𝑙𝑙
 

Spiral
 

1. Parametrize the curve. We can use polar coordinates with 𝜌𝜌 = 𝑒𝑒−𝜙𝜙/4. Remember 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙 ;𝑦𝑦 =
𝜌𝜌 sin𝜙𝜙. 

𝐫𝐫(𝜙𝜙) = �𝑒𝑒
−𝜙𝜙/4 cos𝜙𝜙
𝑒𝑒−𝜙𝜙/4 sin𝜙𝜙

� with 𝜙𝜙 ∈ [0,∞] 

2. Obtain the differential length d𝑙𝑙. The tangent vector is: 

 

𝛕𝛕(𝜙𝜙) =
d𝐫𝐫
d𝜙𝜙

= �
−𝑒𝑒−

𝜙𝜙
4 sin𝜙𝜙 −

1
4
𝑒𝑒−

𝜙𝜙
4 cos𝜙𝜙

𝑒𝑒−
𝜙𝜙
4 cos𝜙𝜙 −

1
4
𝑒𝑒−

𝜙𝜙
4 sin𝜙𝜙

� = 𝑒𝑒−𝜙𝜙/4 �
− sin𝜙𝜙 −

1
4

cos𝜙𝜙

cos𝜙𝜙 −
1
4

sin𝜙𝜙
� 
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Therefore, the line element is: 

d𝑙𝑙 = �
d𝐫𝐫
d𝜙𝜙

�d𝜙𝜙 = ‖𝛕𝛕(𝜙𝜙)‖ d𝜙𝜙 = d𝜙𝜙 𝑒𝑒−
𝜙𝜙
4  ��− sin𝜙𝜙 −

1
4

cos𝜙𝜙�
2

+ �cos𝜙𝜙 −
1
4

sin𝜙𝜙�
2

 

= d𝜙𝜙 𝑒𝑒−𝜙𝜙/4 ��sin2 𝜙𝜙 +
1
2

sin𝜙𝜙 cos𝜙𝜙 +
1

16
cos2 𝜙𝜙� + �cos2 𝜙𝜙 −

1
2

sin𝜙𝜙 cos𝜙𝜙 +
1

16
sin2 𝜙𝜙�

= d𝜙𝜙 𝑒𝑒−𝜙𝜙/4�1 +
1

16
= d𝜙𝜙 𝑒𝑒−

𝜙𝜙
4  
√17

4
  

3. Evaluate integrand at the curve and calculate the integral in 𝜙𝜙 ∈ [0,∞] 

𝐿𝐿 = � 1 d𝑙𝑙
 

Spiral
= �

√17
4

  𝑒𝑒−𝜙𝜙/4 d𝜙𝜙
∞

0
= √17�−𝑒𝑒−𝜙𝜙/4�𝜙𝜙=0

𝜙𝜙=∞ = √17 

 

3) Calculate the line integral ∫ (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙 
𝐶𝐶  where 𝐶𝐶 is the path joining the points (0,0) → (1,0) in 

a straight line, followed by the path joining (1,0) → (1,1) in a straight line. 

This integral needs to be done in two parts: 

        � (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙
 

𝐶𝐶
= � (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙

(1,0)

(0,0)
+ � (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙

(1,1)

(1,0)
 

1. Parametrise the two paths: 

          𝐫𝐫1(𝑢𝑢) = (𝑢𝑢, 0)𝑇𝑇 

          𝐫𝐫2(𝑢𝑢) = (1,𝑢𝑢)𝑇𝑇 

2. Find the differential length d𝑙𝑙 for the two paths: 

d𝑙𝑙1 = �
d𝐫𝐫1
d𝑢𝑢

�d𝑢𝑢 = ��1
0��d𝑢𝑢 = d𝑢𝑢 

d𝑙𝑙𝑥𝑥 = �
d𝐫𝐫2
d𝑢𝑢

�d𝑢𝑢 = ��0
1�� d𝑢𝑢 = d𝑢𝑢 

3. Evaluate the integrand (𝑥𝑥 + 𝑦𝑦) on the two curves: 

Path 1, substitute 𝐫𝐫1(𝑢𝑢):  (𝑥𝑥 + 𝑦𝑦) = 𝑢𝑢 

Path 2, substitute 𝐫𝐫2(𝑢𝑢):  (𝑥𝑥 + 𝑦𝑦) = 1 + 𝑢𝑢 

4. Calculate the integrals: 

� (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙
 

𝐶𝐶
= � (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙

(1,0)

(0,0)
+ � (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙

(1,1)

(1,0)
= � (𝑢𝑢)d𝑢𝑢

1

0
+ � (1 + 𝑢𝑢)d𝑢𝑢

1

0

= �
𝑢𝑢2

2
�
0

1

+ �𝑢𝑢 +
𝑢𝑢2

2
�
0

1

=
1
2

+
3
2

= 2 
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D. LINE INTEGRAL OF VECTOR FIELD WITH DOT PRODUCT 𝐅𝐅 ⋅ 𝐝𝐝𝐝𝐝 

Surprisingly many times in Physics, equations lead to a line integral along a path 𝐿𝐿 in which the 
integrand is the dot product between a vector field 𝐅𝐅(𝐫𝐫) and the unit vector tangential to the path 
�̂�𝐭 = 𝛕𝛕/‖𝛕𝛕‖ (with 𝛕𝛕 = d𝐫𝐫/d𝑢𝑢):  

 

Once the dot product is performed then (𝐅𝐅 ⋅ �̂�𝐭)d𝑙𝑙 is a regular scalar line integral as studied earlier. 
Since this integral involves the dot product with the tangential vector, the direction in which the path 
is traversed is important (swapping direction determines the sign of the result). 

As an example, the work done by a force is equal to the force multiplied by the displacement Δ𝐫𝐫 in 
the direction of the force. This statement can be written as a dot product when the force is constant 
along the path: 𝑊𝑊 = 𝐅𝐅 ⋅ Δ𝐫𝐫. However, when the force is changing throughout the path, we can divide 
it into tiny differential paths and write d𝑊𝑊 = 𝐅𝐅(𝐫𝐫) ⋅ d𝐫𝐫 for each, so that the total work done: 

𝑊𝑊 = �𝐅𝐅(𝐫𝐫) ⋅ d𝐫𝐫
 

𝐿𝐿
 

CALCULATION 

Once a parametrization 𝐫𝐫(𝑢𝑢) with 𝑢𝑢 ∈ [𝑎𝑎, 𝑏𝑏] is found, we can find the vector displacement differential 
d𝐫𝐫 in terms of the parameter 𝑢𝑢 and d𝑢𝑢. Two ways to prove this: First, consider the definition d𝐫𝐫 ≝
�̂�𝐭 d𝑙𝑙, together with the definition of �̂�𝐭 = 𝛕𝛕/‖𝛕𝛕‖ and of the scalar line integral element d𝑙𝑙 = ‖𝛕𝛕‖d𝑢𝑢. 

Alternatively, calculate total differential of the vector function 𝐫𝐫(𝑢𝑢) using the chain rule d𝐫𝐫 = d𝐫𝐫
d𝑢𝑢

d𝑢𝑢. 

 

Both ways lead to the same result. Therefore, writing this explicitly:  

 

 

𝑊𝑊 = � (𝐅𝐅 ⋅ �̂�𝐭) ���
dot product

d𝑙𝑙
 

𝐿𝐿
= �𝐅𝐅 ⋅ d𝐫𝐫

 

𝐿𝐿
 

 
d𝐫𝐫 ≝ �̂�𝐭 d𝑙𝑙 

 (�̂�𝐭 is the tangent unit vector) 
 

d𝐫𝐫 = �̂�𝐭 d𝑙𝑙 =
𝛕𝛕
‖𝛕𝛕‖

‖𝛕𝛕‖d𝑢𝑢 = 𝛕𝛕 d𝑢𝑢 =
d𝐫𝐫
d𝑢𝑢

d𝑢𝑢        ↔          d𝐫𝐫 =
d𝐫𝐫
d𝑢𝑢

d𝑢𝑢 

𝑊𝑊 = �𝐅𝐅 ⋅ d𝐫𝐫
 

𝐿𝐿
= � �𝐅𝐅(𝐫𝐫(𝑢𝑢)) ⋅

d𝐫𝐫(𝑢𝑢)
d𝑢𝑢

�  d𝑢𝑢
𝑏𝑏

𝑎𝑎
 

 

d𝐫𝐫
d𝑢𝑢

= �
d𝑥𝑥/d𝑢𝑢
d𝑦𝑦/d𝑢𝑢
d𝑧𝑧/d𝑢𝑢

� 

 

1) Parametrise the curve: 𝐫𝐫(𝑢𝑢) with 𝑢𝑢 ∈ [𝑎𝑎, 𝑏𝑏]. 

2) Find the displacement differential d𝐫𝐫 = d𝐫𝐫
d𝑢𝑢

d𝑢𝑢. 
3) Evaluate the integrand 𝐅𝐅 ⋅ d𝐫𝐫 on the curve. Remember to do the DOT PRODUCT and to 

SUBSTITUTE 𝐫𝐫(𝑢𝑢) into 𝐅𝐅(𝐫𝐫) so that 𝐅𝐅 ⋅ d𝐫𝐫 = 𝑔𝑔(𝑢𝑢) d𝑢𝑢 is a scalar integrand involving 𝑢𝑢 only. 
4) Calculate the 1D definite integration in 𝑢𝑢 ∈ [𝑎𝑎, 𝑏𝑏]. 
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VISUAL INTUITION: 

The line integral of 𝐅𝐅 ⋅ d𝐫𝐫 is adding up positive values (𝐅𝐅 ⋅ d𝐫𝐫) > 0 when the path moves in the 
direction of the field, negative values (𝐅𝐅 ⋅ d𝐫𝐫) < 0 when the path moves in opposite direction to the 
field, and does not count (zero value (𝐅𝐅 ⋅ d𝐫𝐫) = 0) those regions where the path moves exactly 
orthogonal to the vector field. See examples: 

 

The direction of the path is important, as flipping the direction 𝐶𝐶 → −𝐶𝐶 will change the sign: 

�𝐅𝐅 ⋅ dr
 

𝐶𝐶
= −� 𝐅𝐅 ⋅ dr

 

−𝐶𝐶
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4) Consider the 2D vector field 𝐅𝐅(𝑥𝑥,𝑦𝑦) = (1,1 + 𝑥𝑥). Calculate the integral ∫ 𝐅𝐅 ⋅ d𝐫𝐫 
𝐿𝐿  where 𝐿𝐿 is the 

circular anticlockwise path with radius 𝑅𝑅 centered at the origin. 

Solution:  

1) Parametrise the path: 

𝐫𝐫(𝜙𝜙) = �𝑅𝑅 cos𝜙𝜙
𝑅𝑅 sin𝜙𝜙�with 𝜙𝜙 ∈ [0,2𝜋𝜋] 

 

2) Find the vector path differential d𝐫𝐫: 

𝛕𝛕(𝜙𝜙) =
d𝐫𝐫
d𝜙𝜙

= �−𝑅𝑅 sin𝜙𝜙
𝑅𝑅 cos𝜙𝜙 � 

So, the displacement differential can be obtained as: 

d𝐫𝐫 =
d𝐫𝐫
d𝜙𝜙

d𝜙𝜙 = �−𝑅𝑅 sin𝜙𝜙
𝑅𝑅 cos𝜙𝜙 � d𝜙𝜙 

 

3) Evaluate the integrand 𝐅𝐅 ⋅ d𝐫𝐫 along the path (remember substituting 𝐅𝐅�𝐫𝐫(𝜙𝜙)� and doing the dot 
product) 

(i) The vector field 𝐅𝐅 needs to be expressed in terms of the coordinate 𝜙𝜙 by substituting the path 𝐫𝐫(𝜙𝜙) 
into 𝑥𝑥 and 𝑦𝑦: 

𝐅𝐅�𝐫𝐫(𝜙𝜙)� = 𝐅𝐅(𝑥𝑥(𝜙𝜙),𝑦𝑦(𝜙𝜙)) = 𝐅𝐅(𝑅𝑅 cos𝜙𝜙 ,𝑅𝑅 sin𝜙𝜙) = � 1
1 + 𝑅𝑅 cos𝜙𝜙� 

(ii) The dot product needs to be done: 

𝐅𝐅 ⋅ d𝐫𝐫 = � 1
1 + 𝑅𝑅 cos𝜙𝜙� ⋅ �

−𝑅𝑅 sin𝜙𝜙
𝑅𝑅 cos𝜙𝜙 � d𝜙𝜙 = (−𝑅𝑅 sin𝜙𝜙 + 𝑅𝑅 cos𝜙𝜙 + 𝑅𝑅2 cos2 𝜙𝜙) d𝜙𝜙 

The order of the two steps above can be swapped. 

 

4) Calculate the integral: 

Everything is written in terms of either constants (𝑅𝑅) or parameters (𝜙𝜙), so we are ready to integrate 
in 𝜙𝜙 ∈ [0,2𝜋𝜋]: 

�𝐅𝐅 ⋅ d𝐫𝐫
 

𝐿𝐿
= � (−𝑅𝑅 sin𝜙𝜙 + 𝑅𝑅 cos𝜙𝜙 + 𝑅𝑅2 cos2 𝜙𝜙)𝑑𝑑𝜙𝜙

2𝜋𝜋

0

= � �−𝑅𝑅 sin𝜙𝜙 + 𝑅𝑅 cos𝜙𝜙 + 𝑅𝑅2 �
1
2

+
1
2

cos 2𝜙𝜙��𝑑𝑑𝜙𝜙
2𝜋𝜋

0

= �𝑅𝑅 cos𝜙𝜙 + 𝑅𝑅 sin𝜙𝜙 +
𝑅𝑅2𝜙𝜙

2
+
𝑅𝑅2

4
sin 2𝜙𝜙�

𝜙𝜙=0

𝜙𝜙=2𝜋𝜋

= (𝑅𝑅 + 0 + 𝑅𝑅2𝜋𝜋 + 0) − (𝑅𝑅 + 0 + 0 + 0) = 𝑅𝑅2𝜋𝜋 
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ALTERNATIVE NOTATION (AND POSSIBLE SHORTCUTS) 

Start from the usual notation: 

𝑊𝑊 = �𝐅𝐅(𝐫𝐫) ⋅ d𝐫𝐫
 

𝐿𝐿
 

 
For the function 𝐅𝐅, we can write its three components. For the vector differential d𝐫𝐫, consider how 
the d𝑢𝑢’s cancel on each component. We arrive at: 

𝐅𝐅(𝐫𝐫) = �
𝐹𝐹𝑥𝑥(𝐫𝐫)
𝐹𝐹𝑦𝑦(𝐫𝐫)
𝐹𝐹𝑧𝑧(𝐫𝐫)

� ;                      d𝐫𝐫 = �
d𝑥𝑥/d𝑢𝑢
d𝑦𝑦/d𝑢𝑢
d𝑧𝑧/d𝑢𝑢

� d𝑢𝑢 = �
d𝑥𝑥
d𝑦𝑦
d𝑧𝑧
� ;  

Therefore, we can explicitly carry out the dot product of the two vectors 𝐅𝐅(𝐫𝐫) ⋅ d𝐫𝐫: 

𝐅𝐅 ⋅ d𝐫𝐫 = 𝐹𝐹𝑥𝑥  d𝑥𝑥 + 𝐹𝐹𝑦𝑦 d𝑦𝑦 + 𝐹𝐹𝑧𝑧 d𝑧𝑧  

Leading to a very common way of writing vector field line integrals: 

 

In this notation, the dot product (an important part of step 3) has already been done for you! So, in 
step 3, you just have to evaluate the integrand and the differentials along the curve. 

The advantage of this last form is that we can use, for instance, 𝑥𝑥 directly as the parameter in the first 
integral, and then write the 𝑥𝑥 component of 𝐅𝐅 as a function of that parameter only 𝐹𝐹𝑥𝑥(𝑥𝑥) = 𝐅𝐅�𝐫𝐫(𝑥𝑥)� ⋅
𝐱𝐱� so that we can evaluate the integral directly, with no need to compute tangents nor parametrizing 
the curve with an external parameter. 

Remember, even though this notation looks different, it is completely equivalent to previous 
definitions of line integrals, and they always give the same result.  

For example, starting from the above, if the path is written as 𝐫𝐫(𝑢𝑢) = (𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)), then it is 

clear that d𝑥𝑥 = d𝑥𝑥
d𝑢𝑢

d𝑢𝑢 = 𝑥𝑥′(𝑢𝑢) d𝑢𝑢, and similarly for the other two, so the integral can be reduced back 
to where we started: 

 

  

𝑊𝑊 = �𝐹𝐹𝑥𝑥  d𝑥𝑥 + 𝐹𝐹𝑦𝑦 d𝑦𝑦 + 𝐹𝐹𝑧𝑧 d𝑧𝑧
 

𝐿𝐿
= �𝐹𝐹𝑥𝑥d𝑥𝑥

 

𝐿𝐿
+ �𝐹𝐹𝑦𝑦d𝑦𝑦

 

𝐿𝐿
+ �𝐹𝐹𝑧𝑧d𝑧𝑧

 

𝐿𝐿
 

𝑊𝑊 = � �𝐹𝐹𝑥𝑥(𝑢𝑢) 𝑥𝑥′(𝑢𝑢) + 𝐹𝐹𝑦𝑦(𝑢𝑢) 𝑦𝑦′(𝑢𝑢) + 𝐹𝐹𝑧𝑧(𝑢𝑢) 𝑧𝑧′(𝑢𝑢)�d𝑢𝑢
𝑏𝑏

𝑎𝑎
= � �𝐅𝐅(𝐫𝐫(𝑢𝑢)) ⋅

d𝐫𝐫
d𝑢𝑢

(𝑢𝑢)�  d𝑢𝑢
𝑏𝑏

𝑎𝑎
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5) Calculate the line integral: 

𝑊𝑊 = �𝑥𝑥 d𝑥𝑥 − 𝑦𝑦 d𝑦𝑦 + 𝑧𝑧 d𝑧𝑧
 

L
 

Along one revolution of the helical line specified parametrically as 𝑥𝑥 = 𝑅𝑅 cos𝜙𝜙 ;𝑦𝑦 =
𝑅𝑅 sin𝜙𝜙 ; 𝑧𝑧 = 𝑏𝑏𝜙𝜙. 
 

Solution:  
 
1. Parametrise the curve, already done in the question. One revolution corresponds to a change of 
𝜙𝜙 ∈ [0,2𝜋𝜋].  
 
2. Find the displacement differentials (d𝑥𝑥, d𝑦𝑦, d𝑧𝑧) = d𝐫𝐫.  
 

d𝑥𝑥
d𝜙𝜙

= −𝑅𝑅 sin𝜙𝜙 →  d𝑥𝑥 = −𝑅𝑅 sin𝜙𝜙 d𝜙𝜙;  

d𝑦𝑦
d𝜙𝜙

= 𝑅𝑅 cos𝜙𝜙 →  d𝑦𝑦 = 𝑅𝑅 cos𝜙𝜙 d𝜙𝜙; 

d𝑧𝑧
d𝜙𝜙

= 𝑏𝑏 → d𝑧𝑧 = 𝑏𝑏 d𝜙𝜙  

Note that this is equivalent to d𝐫𝐫 = d𝐫𝐫
d𝜙𝜙

d𝜙𝜙 = �
−𝑅𝑅 sin𝜙𝜙
𝑅𝑅 cos𝜙𝜙

𝑏𝑏
� d𝜙𝜙 = �

d𝑥𝑥
d𝑦𝑦
d𝑧𝑧
� 

3. Evaluate the integrand at the curve: 
 

𝑊𝑊 = � 𝑥𝑥 d𝑥𝑥 − 𝑦𝑦 d𝑦𝑦 + 𝑧𝑧 d𝑧𝑧
 

AB
= � �−𝑥𝑥 𝑅𝑅 sin𝜙𝜙�����

d𝑥𝑥

− 𝑦𝑦𝑅𝑅 cos𝜙𝜙�����
d𝑦𝑦

+ 𝑧𝑧 𝑏𝑏⏞
d𝑧𝑧

� d𝜙𝜙 
2𝜋𝜋

0
 

 
The dot product has already been done for us. But be careful! We still need to write 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 in terms 
of the parameter, substituting the parametric equation of the line: 
 

𝑊𝑊 = � �− (𝑅𝑅 cos𝜙𝜙)�������
𝑥𝑥(𝜙𝜙)

𝑅𝑅 sin𝜙𝜙 − (𝑅𝑅 sin𝜙𝜙)�������
𝑦𝑦(𝜙𝜙)

𝑅𝑅 cos𝜙𝜙 + (𝑏𝑏𝜙𝜙)�
𝑧𝑧(𝜙𝜙)

𝑏𝑏� d𝜙𝜙 
2𝜋𝜋

0

= � (2𝑅𝑅2 cos𝜙𝜙 sin𝜙𝜙 + 𝑏𝑏2𝜙𝜙) d𝜙𝜙 
2𝜋𝜋

0
= �𝑅𝑅2 sin2 𝜙𝜙 +

𝑏𝑏2

2
𝜙𝜙2�

𝜙𝜙=0

𝜙𝜙=2𝜋𝜋

= 0 + 2𝜋𝜋2𝑏𝑏2 
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A. CIRCULATION OF A FIELD 

In many cases in physical laws, the path 𝐶𝐶 is a closed path or loop. Then the integral is called the 
circulation of the field around the loop, and the fact that the path is closed is denoted with a circle 
on the integration symbol: 

 

Example: 

6) Calculate: 

𝐽𝐽 = �2𝑥𝑥𝑦𝑦 d𝑥𝑥 + 𝑥𝑥2d𝑦𝑦
 

𝐿𝐿
 

Along the loop 𝐿𝐿 = OB → BA → AO with O = (0,0), B = (1,0), A = (0,1). 

Solution: Consider each path separately: 

First path 𝐎𝐎𝐎𝐎: Use parameter 𝑥𝑥 in curve 𝑦𝑦 = 0. Therefore d𝑦𝑦 = 0. Remember to substitute 𝑥𝑥 and 𝑦𝑦. 

𝐽𝐽OB = � 2𝑥𝑥𝑦𝑦 d𝑥𝑥
1

0
= � 2(𝑥𝑥)(0)d𝑥𝑥

1

0
= 0 

Notice how we didn’t have to use any extra parameter; we just integrated in 𝑥𝑥 

Second path 𝐎𝐎𝐁𝐁: Use parameter 𝑥𝑥 with 𝑦𝑦 = 1 − 𝑥𝑥.  Therefore d𝑦𝑦 = d𝑦𝑦
d𝑥𝑥

d𝑥𝑥 = −d𝑥𝑥. Problem: the 
parameter 𝑥𝑥 goes from 𝑥𝑥 = 1 to 𝑥𝑥 = 0, it goes down! That can be confusing, especially because in 
𝐅𝐅 ⋅ d𝐫𝐫 integrals, the direction is very important. There are two possible solutions: 

(i) Mathematically rigorous solution: redefine the path using a parameter which increases, e.g. use 
the straight-line equation 𝐫𝐫(𝑢𝑢) = 𝐛𝐛 + 𝑢𝑢(𝐚𝐚 − 𝐛𝐛) = (1 − 𝑢𝑢,𝑢𝑢) with 𝑢𝑢 ∈ [0,1]. Now d𝑥𝑥 = −d𝑢𝑢 and 
d𝑦𝑦 = d𝑢𝑢, and we can continue as usual: 

𝐽𝐽BA = � 2𝑥𝑥𝑦𝑦 d𝑥𝑥
 

BA
+ 𝑥𝑥2d𝑦𝑦 = � 2(1 − 𝑢𝑢)(𝑢𝑢)(−d𝑢𝑢) + (1 − 𝑢𝑢)2 (d𝑢𝑢)

1

0
= (… ) = 0 

(ii) Easy solution: Define a path −𝐿𝐿 which is identical to the path 𝐿𝐿 but reversed in direction. In that 
case, we can use the original parametrisation, so that path −𝐿𝐿 is given by 𝐫𝐫(𝑥𝑥) = (𝑥𝑥, 1 − 𝑥𝑥) with 𝑥𝑥 ∈
[0,1]. Then apply the fact that reversing direction flips the sign ∫ 𝐅𝐅 ⋅ d𝐫𝐫 

𝐿𝐿 = −∫ 𝐅𝐅 ⋅ d𝐫𝐫 
−𝐿𝐿 : 

𝐽𝐽BA = �2𝑥𝑥𝑦𝑦 d𝑥𝑥
 

𝐿𝐿
+ 𝑥𝑥2d𝑦𝑦 = −� 2𝑥𝑥𝑦𝑦 d𝑥𝑥

 

−𝐿𝐿
+ 𝑥𝑥2d𝑦𝑦 = −� 2𝑥𝑥(1 − 𝑥𝑥)d𝑥𝑥 + 𝑥𝑥2(− d𝑥𝑥)

1

0

= � (2𝑥𝑥 − 3𝑥𝑥2) d𝑥𝑥
0

1
= [𝑥𝑥2 − 𝑥𝑥3]𝑥𝑥=1𝑥𝑥=0 = 0 

Third path 𝐁𝐁𝐎𝐎: Use parameter 𝑦𝑦 with 𝑥𝑥 = 0.  Therefore d𝑥𝑥 = 0. Same problem of 𝑦𝑦 decreasing. 

𝐽𝐽AO = �2𝑥𝑥𝑦𝑦 d𝑥𝑥
 

𝐿𝐿
+ 𝑥𝑥2d𝑦𝑦 = −� 2𝑥𝑥𝑦𝑦 d𝑥𝑥

 

−𝐿𝐿
+ 𝑥𝑥2d𝑦𝑦 = −� 2(0)(𝑦𝑦)(−d𝑦𝑦) + 02 d𝑦𝑦

1

0
= 0 

So finally, 𝐽𝐽 = 𝐽𝐽OB + 𝐽𝐽BA + 𝐽𝐽AO = 0. This result is not accidental because 𝐅𝐅 = (2𝑥𝑥𝑦𝑦, 𝑥𝑥2) is the gradient 
of a scalar field 𝑈𝑈 = 𝑥𝑥2𝑦𝑦 (we will see what this means in the vector analysis chapter) 

𝐽𝐽 = �𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶
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COMPUTATIONAL EXAMPLE OF CIRCULATION IN PHYSICS 

Ampere’s law relates the circulation of a static magnetic field in any closed path 𝐶𝐶 with the total 
electric current which crosses through any surface enclosed by that path, 𝐼𝐼enc: 

�𝐎𝐎 ⋅ d𝐫𝐫
 

𝐶𝐶
= 𝜇𝜇0𝐼𝐼enc 

Consider a current carrying wire at (𝑥𝑥,𝑦𝑦) = (0,0) carrying a current 𝐼𝐼1𝐳𝐳� in the positive 𝑧𝑧 direction. The 
magnetic field created by this current is given by (it can be found using Ampere’s law): 

𝐎𝐎𝐼𝐼1(𝐫𝐫) =
𝜇𝜇0𝐼𝐼1
2𝜋𝜋𝜌𝜌

𝐞𝐞�𝜙𝜙 

which we can write in cartesian coordinates as: 𝐎𝐎𝐼𝐼(𝐫𝐫) = 𝜇𝜇0𝐼𝐼
2𝜋𝜋�𝑥𝑥2+𝑦𝑦2

�−𝑦𝑦 𝐱𝐱�+𝑥𝑥 𝐲𝐲�
�𝑥𝑥2+𝑦𝑦2

� = 𝜇𝜇0𝐼𝐼 (−𝑦𝑦 𝐱𝐱�+𝑥𝑥 𝐲𝐲�)
2𝜋𝜋(𝑥𝑥2+𝑦𝑦2) . If the 

current carrying wire was instead placed at 𝐫𝐫1 = (𝑥𝑥1,𝑦𝑦1), then we can shift our origin, i.e. do the 
change 𝑥𝑥 → 𝑥𝑥 − 𝑥𝑥1, 𝑦𝑦 → 𝑦𝑦 − 𝑦𝑦1, so that: 

𝐎𝐎𝐼𝐼1(𝐫𝐫)|wire at (𝑥𝑥1,𝑦𝑦1)  =
𝜇𝜇0𝐼𝐼1 (−(𝑦𝑦 − 𝑦𝑦1) 𝐱𝐱� + (𝑥𝑥 − 𝑥𝑥1) 𝐲𝐲�)

2𝜋𝜋((𝑥𝑥 − 𝑥𝑥1)2 + (𝑦𝑦 − 𝑦𝑦1)2)  

If we have TWO current carrying wires, wire 1 placed at location 𝐫𝐫1 carrying a current 𝐼𝐼1𝐳𝐳�, and wire 2 
placed at location 𝐫𝐫2 carrying a current 𝐼𝐼2𝐳𝐳�, the total magnetic field will be the superposition of both: 

𝐎𝐎tot(𝐫𝐫) = 𝐎𝐎𝐼𝐼1(𝐫𝐫)|wire at (𝑥𝑥1,𝑦𝑦1) + 𝐎𝐎𝐼𝐼2(𝐫𝐫)|wire at (𝑥𝑥2,𝑦𝑦2) 

Computationally it is trivial to add two such functions and simplify the result. For example, this is the 
magnetic field in the XY plane when a current of 1𝐳𝐳� is placed at (0,1/2) and a current of −1

2
𝐳𝐳� is placed 

at (0,−1/2): we have 𝐎𝐎tot(𝐫𝐫) = 𝜇𝜇0 �
1−9𝑥𝑥2(−1+𝑦𝑦)+𝑦𝑦−9𝑦𝑦2−9𝑦𝑦3

36𝜋𝜋(𝑥𝑥2+(−13+𝑦𝑦)2)(𝑥𝑥2+(13+𝑦𝑦)2)
𝐱𝐱� +

𝑥𝑥(19+𝑥𝑥
2+2𝑦𝑦+𝑦𝑦2)

4𝜋𝜋(𝑥𝑥2+(−13+𝑦𝑦)2)(𝑥𝑥2+(13+𝑦𝑦)2)
𝐲𝐲��. 
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Now, let’s calculate the circulation of 𝐎𝐎 around the path 𝐶𝐶 given by the unit circle in the XY plane 
centred at the origin. For this we follow the steps: 

�𝐎𝐎 ⋅ d𝐫𝐫
 

𝐶𝐶
 

1. Parametrise the path: 𝐫𝐫(𝜙𝜙) = (cos𝜙𝜙 , sin𝜙𝜙 , 0) 

2. Obtain the vector displacement differential: d𝐫𝐫 = d𝐫𝐫
d𝜙𝜙

d𝜙𝜙 = (− sin𝜙𝜙 , cos𝜙𝜙 , 0) 

3. Evaluate the integrand at the curve and perform the dot product 𝐎𝐎 ⋅ d𝐫𝐫. For this we must substitute 
𝑥𝑥 = cos𝜙𝜙 and 𝑦𝑦 = sin𝜙𝜙 into the expression of 𝐎𝐎 above, and then do the dot product with d𝐫𝐫. This 
messy expression can be simplified using the computer, and we arrive at: 

𝐎𝐎 ⋅ d𝐫𝐫 = 𝜇𝜇0
9(9 + cos2 𝜙𝜙 + 8 sin𝜙𝜙 − sin2 𝜙𝜙)

8𝜋𝜋(41 + 9 cos 2𝜙𝜙)
d𝜙𝜙 

4. Calculate the integral. This is a difficult integral, but again, the computer can solve it. The result is: 

�𝐎𝐎 ⋅ d𝐫𝐫
 

𝐶𝐶
= 𝜇𝜇0 �

9(9 + cos2 𝜙𝜙 + 8 sin𝜙𝜙 − sin2 𝜙𝜙)
8𝜋𝜋(41 + 9 cos 2𝜙𝜙)

d𝜙𝜙
2𝜋𝜋

0
= (computer) = 𝜇𝜇0

1
2

 

which is exactly 𝜇𝜇0𝐼𝐼enc = 𝜇𝜇0(1 − 1
2
), because our curve enclosed both currents, in accordance to 

Ampere’s law. Performing the integration numerically over different curves with their correct 
parametrisation, we get always 𝜇𝜇0𝐼𝐼enc depending on the total current we enclose: 
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PROBLEMS 

LINE INTEGRALS OF SCALAR FIELDS 

7) Calculate ∫ (𝑥𝑥 + 𝑦𝑦)d𝑙𝑙 
𝐶𝐶 , where 𝐶𝐶 is the straight-line segment from (0,0) to (1,1). 

1. Parametrise the curve. The simplest option is 𝐫𝐫(𝑢𝑢) = (𝑢𝑢,𝑢𝑢)𝑇𝑇. 

2. Find the differential of length: d𝑙𝑙 = ‖𝛕𝛕‖d𝑢𝑢 = �d𝐫𝐫
d𝑢𝑢
� d𝑢𝑢 = ‖(1,1)𝑇𝑇‖d𝑢𝑢 = √2 d𝑢𝑢 

3. Evaluate the integrand along the curve: 𝑓𝑓�𝐫𝐫(𝑢𝑢)� = 𝑓𝑓�𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)� 

𝑓𝑓�𝐫𝐫(𝑢𝑢)� = (𝑥𝑥 + 𝑦𝑦)|𝑥𝑥=𝑢𝑢
𝑦𝑦=𝑢𝑢

  = 2𝑢𝑢 

3. Calculate the integral 

�𝑓𝑓 d𝑙𝑙
 

𝐶𝐶
= � (2𝑢𝑢)�

𝑓𝑓(𝑢𝑢)
�√2 d𝑢𝑢������
d𝑙𝑙(𝑢𝑢)

1

0
= 2√2 �

1
2
𝑢𝑢2�

0

1
= √2 

8) Integrate 𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝑥𝑥 − 3𝑦𝑦2 + 𝑧𝑧 over the line segment 𝐶𝐶 joining the origin to the point 
(1,1,1). 

1. Parametrise the curve. The simplest option is: 𝐫𝐫(𝑢𝑢) = (𝑢𝑢,𝑢𝑢,𝑢𝑢)𝑇𝑇 with 𝑢𝑢 ∈ [0,1] 

2. Find the differential of length: d𝑙𝑙 = ‖𝛕𝛕‖d𝑢𝑢 = �d𝐫𝐫
d𝑢𝑢
� d𝑢𝑢 = ‖(1,1,1)𝑇𝑇‖d𝑢𝑢 = √3 d𝑢𝑢 

3. Evaluate the integrand along the curve: 𝑓𝑓�𝐫𝐫(𝑢𝑢)� = 𝑓𝑓�𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)� 

 𝑓𝑓�𝐫𝐫(𝑢𝑢)� = (𝑥𝑥 − 3𝑦𝑦2 + 𝑧𝑧)|𝑥𝑥=𝑢𝑢
𝑦𝑦=𝑢𝑢
𝑧𝑧=𝑢𝑢

  = 𝑢𝑢 − 3𝑢𝑢2 + 𝑢𝑢 = 2𝑢𝑢 − 3𝑢𝑢2. 

4. Calculate the integral 

�𝑓𝑓 d𝑙𝑙
 

𝐶𝐶
= � (2𝑢𝑢 − 3𝑢𝑢2)�������

𝑓𝑓(𝑢𝑢)
�√3 d𝑢𝑢������
d𝑙𝑙(𝑢𝑢)

1

0
= √3[𝑢𝑢2 − 𝑢𝑢3]01 = 0 

9) Evaluate ∫ (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)d𝑙𝑙 
𝐶𝐶 , where 𝐶𝐶 is the straight-line segment from (0,1,0) to (1,0,0). 

Solution: 

1. Parametrise the curve. The simplest option is: 𝐫𝐫(𝑢𝑢) = (𝑢𝑢, 1 − 𝑢𝑢, 0)𝑇𝑇 with 𝑢𝑢 ∈ [0,1] 

2. Find the differential of length: d𝑙𝑙 = ‖𝛕𝛕‖d𝑢𝑢 = �d𝐫𝐫
d𝑢𝑢
� d𝑢𝑢 = ‖(1,−1,0)𝑇𝑇‖d𝑢𝑢 = √2 d𝑢𝑢 

3. Evaluate the integrand along the curve: 𝑓𝑓�𝐫𝐫(𝑢𝑢)� = 𝑓𝑓�𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)� 

 𝑓𝑓�𝐫𝐫(𝑢𝑢)� = (𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧)| 𝑥𝑥=𝑢𝑢
𝑦𝑦=1−𝑢𝑢
𝑧𝑧=0

 = 𝑢𝑢 + 1 − 𝑢𝑢 = 1 

4. Calculate the integral 

�𝑓𝑓 d𝑙𝑙
 

𝐶𝐶
= � (1)�

𝑓𝑓(𝑢𝑢)
�√2 d𝑢𝑢������
d𝑙𝑙(𝑢𝑢)

1

0
= √2[𝑢𝑢]01 = √2 
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10) Calculate the total mass of a circular loop (given by the unit circle in the XY plane centred at 
the origin) given that the circle is denser for higher 𝑥𝑥 values according to the linear mass 
density 𝜆𝜆 = 2 + 𝑥𝑥. 

To calculate the total mass, we need to integrate the density along the curve: 

𝑀𝑀 = �𝜆𝜆 d𝑙𝑙
 

𝐶𝐶
 

1. Parametrise the curve: use polar coordinates with 𝜌𝜌 = 1, so we have 𝐫𝐫(𝜙𝜙) = �cos𝜙𝜙
sin𝜙𝜙�. 

2. Find the differential length. We are using polar coordinates, so by geometrical intuition: 

d𝑙𝑙 = 𝜌𝜌 d𝜙𝜙|𝜌𝜌=1 = d𝜙𝜙 

3. Evaluate the integrand at the curve: 

𝜆𝜆(𝐫𝐫) = 2 + 𝑥𝑥 →   𝜆𝜆�𝐫𝐫(𝜙𝜙)� = 𝜆𝜆(𝑥𝑥 = cos𝜙𝜙) = 2 + cos𝜙𝜙 

4. Calculate the integral: 

𝑀𝑀 = �𝜆𝜆 d𝑙𝑙
 

𝐶𝐶
= � (2 + cos𝜙𝜙) d𝜙𝜙

2𝜋𝜋

0
= [2𝜙𝜙 + sin𝜙𝜙]02𝜋𝜋 = 4𝜋𝜋 

The same as if it had been a constant density of 2. That is because the excess mass in one side is exactly 
compensated by the lack of mass in the other, due to the linear dependence on 𝑥𝑥. 

 

11) Determine the length of the spiral given in polar coordinates as 𝜌𝜌 = 𝑒𝑒−𝜙𝜙, with 𝜙𝜙 ∈ [0,∞]. 

Solution: 

 

We need to integrate d𝑙𝑙 over the spiral: 

𝐿𝐿 = � 1 d𝑙𝑙
 

Spiral
 

1. Parametrize the curve. We can use polar coordinates with 𝜌𝜌 = 𝑒𝑒−𝜙𝜙. Remember 𝑥𝑥 = 𝜌𝜌 cos𝜙𝜙 ;𝑦𝑦 =
𝜌𝜌 sin𝜙𝜙. 

𝐫𝐫(𝜙𝜙) = �𝑒𝑒
−𝜙𝜙 cos𝜙𝜙
𝑒𝑒−𝜙𝜙 sin𝜙𝜙

� with 𝜙𝜙 ∈ [0,∞] 

2. Find the differential line element d𝑙𝑙. The tangent vector is: 

𝛕𝛕(𝜙𝜙) =
d𝐫𝐫
d𝜙𝜙

= �−𝑒𝑒
−𝜙𝜙 sin𝜙𝜙 − 𝑒𝑒−𝜙𝜙 cos𝜙𝜙

𝑒𝑒−𝜙𝜙 cos𝜙𝜙 − 𝑒𝑒−𝜙𝜙 sin𝜙𝜙
� = 𝑒𝑒−𝜙𝜙 �− sin𝜙𝜙 − cos𝜙𝜙

cos𝜙𝜙 − sin𝜙𝜙 � 
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Therefore, the line element is: 

d𝑙𝑙 = ‖𝛕𝛕‖d𝜙𝜙 = d𝜙𝜙 𝑒𝑒−𝜙𝜙 �(− sin𝜙𝜙 − cos𝜙𝜙)2 + (cos𝜙𝜙 − sin𝜙𝜙)2

= d𝜙𝜙 𝑒𝑒−𝜙𝜙 �(sin2 𝜙𝜙 + 2 sin𝜙𝜙 cos𝜙𝜙 + cos2 𝜙𝜙) + (cos2 𝜙𝜙 − 2 sin𝜙𝜙 cos𝜙𝜙 + sin2 𝜙𝜙)
= d𝜙𝜙 𝑒𝑒−𝜙𝜙√2  

3. Evaluate the integrand at the curve and calculate the integral: 

So we can do the integral in 𝜙𝜙 ∈ [0,∞] 

𝐿𝐿 = � 1 d𝑙𝑙
 

Spiral
= � √2 𝑒𝑒−𝜙𝜙 d𝜙𝜙

∞

0
= √2�−𝑒𝑒−𝜙𝜙�𝜙𝜙=0

𝜙𝜙=∞ = √2 

 

12) Calculate the line integral: 

𝐼𝐼 = � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙
 

𝐿𝐿
 

Over the path 𝐿𝐿 = OB → BA → AO with O = (0,0), B = (1,0), A = (0,1). 

Solution:  

Note: the circle on the integral symbol ∮ (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙 
𝐿𝐿  is a way of indicating that the path is closed. 

We cannot parametrize this curve as a single function 𝐫𝐫(𝑢𝑢). Instead we can split the integral into its 
three sections or contributions. 

 

𝐼𝐼 = � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙
 

𝐿𝐿
= � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙

 

OB
+ � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙

 

BA
+ � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙

 

AO
 

 
 
First path OB: Let’s use 𝑥𝑥 ∈ [0,1] as parameter.  

𝐫𝐫(𝑥𝑥) = �𝑥𝑥0� → 𝛕𝛕(𝑥𝑥) =
d𝐫𝐫
d𝑥𝑥

= �1
0� → d𝑙𝑙 = ‖𝛕𝛕‖d𝑥𝑥 = d𝑥𝑥 

� (𝑥𝑥 + 2𝑦𝑦)|𝑥𝑥=𝑥𝑥
𝑦𝑦=0

 d𝑙𝑙
 

OB
= � 𝑥𝑥 d𝑥𝑥

1

0
=

1
2
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Second path BA: Let’s use 𝑦𝑦 ∈ [0,1] as parameter.  

𝐫𝐫(𝑦𝑦) = �1 − 𝑦𝑦
𝑦𝑦 � → 𝛕𝛕(𝑦𝑦) =

d𝐫𝐫
d𝑦𝑦

= �−1
1 � → d𝑙𝑙 = ‖𝛕𝛕‖d𝑥𝑥 = √2 d𝑦𝑦 

� (𝑥𝑥 + 2𝑦𝑦)|𝑥𝑥=1−𝑦𝑦
𝑦𝑦=𝑦𝑦

 √2 d𝑙𝑙
 

OB
= � (1 − 𝑦𝑦 + 2𝑦𝑦)√2 d𝑥𝑥

1

0
= √2 �𝑦𝑦 −

𝑦𝑦2

2
+ 𝑦𝑦2�

𝑦𝑦=0

𝑦𝑦=1

= √2 �
3
2
� 

 

Third path AO: It seems we should use 𝐫𝐫(𝑦𝑦) = �0
𝑦𝑦� with 𝑦𝑦 ∈ [1,0]. But warning!! We have a 

parameter running backwards! What do we do with this? There are two solutions: 
 

 

So finally, adding up the three paths: 

𝐼𝐼 = � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙
 

𝐿𝐿
= � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙

 

OB
+ � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙

 

BA
+ � (𝑥𝑥 + 2𝑦𝑦)d𝑙𝑙

 

AO
=

1
2

+
3√2

2
+ 1

=
3�1 + √2�

2
 

 
Note: There is a shortcut when using 𝑥𝑥 as the parameter. We could have directly applied the fact d𝑙𝑙 =
��d𝑥𝑥

d𝑥𝑥
, d𝑦𝑦
d𝑥𝑥
�� d𝑥𝑥, which can be immediately written as: 

d𝑙𝑙 = d𝑥𝑥�1 + �d𝑦𝑦
d𝑥𝑥
�
2

= d𝑥𝑥�1 + (𝑦𝑦′(𝑥𝑥))2 = 1 d𝑥𝑥 for OB where 𝑦𝑦(𝑥𝑥) = 0 

and similarly, when using 𝑦𝑦 as parameter: 

d𝑙𝑙 = d𝑦𝑦�1 + �d𝑥𝑥
d𝑦𝑦
�
2

= d𝑦𝑦�1 + (𝑥𝑥′(𝑦𝑦))2 = √2 d𝑦𝑦 for BA where 𝑥𝑥(𝑦𝑦) = −𝑦𝑦 

which some books give as an equation when integrating directly using 𝑥𝑥 or 𝑦𝑦; but I think it’s better to 
follow always the same logical steps above and the time saved using this shortcut is not that much. 
 

(i) Mathematically rigorous solution: Let’s choose a parameter which really grows with the 
integration path. Let’s define 𝑦𝑦 = 1 − 𝑢𝑢 and use 𝑢𝑢 ∈ [0,1] as the parameter: 
 

𝐫𝐫(𝑢𝑢) = � 0
1 − 𝑢𝑢� → 𝛕𝛕(𝑢𝑢) =

d𝐫𝐫
d𝑢𝑢

= � 0
−1� → d𝑙𝑙 = ‖𝛕𝛕‖d𝑢𝑢 = d𝑢𝑢 

� (𝑥𝑥 + 2𝑦𝑦)| 𝑥𝑥=0
𝑦𝑦=1−𝑢𝑢

 d𝑙𝑙
 

OB
= � (2 − 2𝑢𝑢) d𝑥𝑥

1

0
= (2𝑢𝑢 − 𝑢𝑢2)𝑢𝑢=0𝑢𝑢=1 = 1 

 
(ii) Fast (but potentially more confusing) solution: The definition of line integrals of the type 
∫ 𝑓𝑓(𝑢𝑢)d𝑢𝑢 
𝐶𝐶  does not care about the direction in which we traverse the path, so if we define a path 
−𝐶𝐶 which is exactly equal to 𝐶𝐶 but traversed in the opposite direction, the result of the integral 
must be unchanged ∫ 𝑓𝑓(𝑢𝑢)d𝑢𝑢 

𝐶𝐶 = ∫ 𝑓𝑓(𝑢𝑢)d𝑢𝑢 
−𝐶𝐶 . So, we can use −𝐶𝐶 with the increasing parameter 

𝑦𝑦 ∈ [0,1] (But warning: this is exactly the opposite of what happens in integrals of the type ∫ 𝐅𝐅 ⋅ d𝐫𝐫 
𝐶𝐶  

seen later, which do change sign. If in doubt, the mathematically rigorous solution always works.) 

𝐫𝐫(𝑦𝑦) = �0
𝑦𝑦� → 𝛕𝛕(𝑥𝑥) =

d𝐫𝐫
d𝑦𝑦

= �0
1� → d𝑙𝑙 = ‖𝛕𝛕‖d𝑦𝑦 = d𝑦𝑦 

� (𝑥𝑥 + 2𝑦𝑦)|𝑥𝑥=0
𝑦𝑦=𝑦𝑦

 d𝑙𝑙
 

OB
= +� (𝑥𝑥 + 2𝑦𝑦)|𝑥𝑥=0

𝑦𝑦=𝑦𝑦
 d𝑙𝑙

 

BO
= � 2𝑦𝑦 d𝑦𝑦

1

0
= (𝑦𝑦2)𝑦𝑦=1 = 1 
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LINE INTEGRALS OF VECTORS 

13) Find the centre of mass of a semi-circular metal arch, given by the equation 𝑦𝑦2 + 𝑧𝑧2 = 1 with 
𝑧𝑧 ≥ 0, knowing that it is denser at the bottom than at the top, following the mass density 
equation 𝜆𝜆(𝑧𝑧) = 2 − 𝑧𝑧 

The centre of mass is calculated as the weighted average of the position vector 𝐫𝐫 weighted by the 
density 𝜆𝜆, as follows: 

𝐫𝐫CM =
∫ 𝐫𝐫 𝜆𝜆 d𝑙𝑙 
𝐶𝐶
∫ 𝜆𝜆 d𝑙𝑙 
𝐶𝐶

 

 

The numerator is the line integral of a vector, whose result is a vector, which can be solved by splitting 
it into its components: 

�𝐫𝐫 𝜆𝜆 d𝑙𝑙
 

𝐶𝐶
= � (𝑥𝑥 𝐱𝐱� + 𝑦𝑦 𝐲𝐲� + 𝑧𝑧 𝐳𝐳�) 𝜆𝜆 d𝑙𝑙

 

𝐶𝐶
= 𝐱𝐱� �𝑥𝑥 𝜆𝜆 d𝑙𝑙

 

𝐶𝐶
+ 𝐲𝐲� �𝑦𝑦 𝜆𝜆 d𝑙𝑙

 

𝐶𝐶
+ 𝐱𝐱� �𝑧𝑧 𝜆𝜆 d𝑙𝑙

 

𝐶𝐶
 

So, in total, we need to calculate 4 different line integrals. Perform the steps for each one (they share 
steps 1 and 2): 

1. Parametrise the curve. Let’s use an angle from 0 to 𝜋𝜋 as the parameter: 

𝐫𝐫(𝛼𝛼) = �
0

cos𝛼𝛼
sin𝛼𝛼

� 

2. Find the differential length: 

d𝑙𝑙 = ‖𝛕𝛕‖d𝛼𝛼 = �
d𝐫𝐫
d𝛼𝛼
�d𝛼𝛼 = ��

0
− sin𝛼𝛼
cos𝛼𝛼

��d𝛼𝛼 = �(− sin𝛼𝛼)2 + (cos𝛼𝛼)2 d𝛼𝛼 = d𝛼𝛼 

3. Evaluate the integrand at the curve. Simply substitute 𝑥𝑥 = 0,𝑦𝑦 = cos𝛼𝛼 and 𝑧𝑧 = sin𝛼𝛼. 

𝜆𝜆 d𝑙𝑙 = (2 − 𝑧𝑧)d𝑙𝑙 = (2 − sin𝛼𝛼)d𝛼𝛼 
𝑥𝑥 𝜆𝜆 d𝑙𝑙 = 𝑥𝑥 (2 − 𝑧𝑧) d𝑙𝑙 = 0 d𝛼𝛼 
𝑦𝑦 𝜆𝜆 d𝑙𝑙 = 𝑦𝑦 (2 − 𝑧𝑧) d𝑙𝑙 = cos𝛼𝛼 (2 − sin𝛼𝛼) d𝛼𝛼 
𝑧𝑧 𝜆𝜆 d𝑙𝑙 = 𝑧𝑧 (2 − 𝑧𝑧) d𝑙𝑙 = sin𝛼𝛼 (2 − sin𝛼𝛼) d𝛼𝛼 

4. Calculate the four integrals: 

�𝜆𝜆 d𝑙𝑙
 

𝐶𝐶
= � (2 − sin𝛼𝛼)d𝛼𝛼

𝜋𝜋

0
= [2𝛼𝛼 + cos𝛼𝛼]0𝜋𝜋 = (2𝜋𝜋 − 1) − (0 + 1) = 2𝜋𝜋 − 2 

�𝑥𝑥 𝜆𝜆 d𝑙𝑙
 

𝐶𝐶
= �0 d𝛼𝛼

 

𝐶𝐶
= 0 

�𝑦𝑦 𝜆𝜆 d𝑙𝑙
 

𝐶𝐶
= � cos𝛼𝛼 (2 − sin𝛼𝛼) d𝛼𝛼

𝜋𝜋

0
= � (2 cos𝛼𝛼 − sin𝛼𝛼 cos𝛼𝛼) d𝛼𝛼

𝜋𝜋

0
= �2 sin𝛼𝛼 +

1
2

cos2 𝛼𝛼�
0

𝜋𝜋

= �0 +
1
2

(−1)2� − �0 +
1
2

(1)2� = 0 
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�𝑧𝑧 𝜆𝜆 d𝑙𝑙
 

𝐶𝐶
= � sin𝛼𝛼 (2 − sin𝛼𝛼) d𝛼𝛼

𝜋𝜋

0
= � (2 sin𝛼𝛼 − sin2 𝛼𝛼) d𝛼𝛼

𝜋𝜋

0

= � �2 sin𝛼𝛼 − �
1
2
−

1
2

cos 2𝛼𝛼��  d𝛼𝛼
𝜋𝜋

0
= �−2 cos𝛼𝛼 −

𝛼𝛼
2

+
1
4

sin 2𝛼𝛼�
0

𝜋𝜋

= �2 −
𝜋𝜋
2

+ 0� − (−2 − 0 + 0) = 4 −
𝜋𝜋
2

 

Hence, we now know all the required integrals: 

𝐫𝐫CM =
∫ 𝐫𝐫 𝜆𝜆 d𝑙𝑙 
𝐶𝐶
∫ 𝜆𝜆 d𝑙𝑙 
𝐶𝐶

=
𝐱𝐱� ∫ 𝑥𝑥 𝜆𝜆 d𝑙𝑙 

𝐶𝐶 + 𝐲𝐲� ∫ 𝑦𝑦 𝜆𝜆 d𝑙𝑙 
𝐶𝐶 + 𝐱𝐱� ∫ 𝑧𝑧 𝜆𝜆 d𝑙𝑙 

𝐶𝐶
∫ 𝜆𝜆 d𝑙𝑙 
𝐶𝐶

= 0𝐱𝐱� + 0𝐲𝐲� +
4 − 𝜋𝜋/2
2𝜋𝜋 − 2

𝐳𝐳� =
8 − 𝜋𝜋

4𝜋𝜋 − 4
𝐳𝐳� 

 

 

LINE INTEGRAL OF VECTOR FIELD (WITH DOT PRODUCT 𝐅𝐅 ⋅ d𝐫𝐫) 

14) Find the work done by the force 𝐅𝐅 = (𝑦𝑦 − 𝑥𝑥2)𝐱𝐱� + (𝑧𝑧 − 𝑦𝑦2)𝐲𝐲� + (𝑥𝑥 − 𝑧𝑧2)𝐳𝐳� over the curve 
𝐫𝐫(𝑡𝑡) = (𝑡𝑡, 𝑡𝑡2, 𝑡𝑡3) with 𝑡𝑡 ∈ [0,1]. 

1. Parametrise the curve. This is already done by the question: 

𝐫𝐫(𝑡𝑡) = �
𝑡𝑡
𝑡𝑡2
𝑡𝑡3
� with 𝑡𝑡 ∈ [0,1] 

2. Find the vector differential of path d𝐫𝐫: 

d𝐫𝐫 = 𝛕𝛕 d𝑡𝑡 =
d𝐫𝐫
d𝑡𝑡

d𝑡𝑡 = �
1
2𝑡𝑡

3𝑡𝑡2
� d𝑡𝑡 

3. Evaluate the integrand 𝐅𝐅 ⋅ d𝐫𝐫 along the curve, remember to do the dot product: 

𝐅𝐅�𝐫𝐫(𝑢𝑢)� ⋅ d𝐫𝐫 = 𝐅𝐅�𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)� ⋅ d𝐫𝐫 = �
𝑦𝑦 − 𝑥𝑥2

𝑧𝑧 − 𝑦𝑦2

𝑥𝑥 − 𝑧𝑧2
� ⋅ �

1
2𝑡𝑡

3𝑡𝑡2
� d𝑡𝑡 

We can do the dot product first, and then substitute 𝑥𝑥 = 𝑡𝑡, 𝑦𝑦 = 𝑡𝑡2 and 𝑧𝑧 = 𝑡𝑡3, or the other way 
around, both give the same result 

 𝐅𝐅 ⋅ d𝐫𝐫 = [(𝑡𝑡2 − 𝑡𝑡2) + (𝑡𝑡3 − 𝑡𝑡4)(2𝑡𝑡) + (𝑡𝑡 − 𝑡𝑡6)(3𝑡𝑡2)]d𝑡𝑡 = (2𝑡𝑡4 − 2𝑡𝑡5 + 3𝑡𝑡3 − 3𝑡𝑡8)d𝑡𝑡 

4. Calculate the integral: 

�𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶
= � (2𝑡𝑡4 − 2𝑡𝑡5 + 3𝑡𝑡3 − 3𝑡𝑡8)d𝑡𝑡

1

0
= �

2
5
𝑡𝑡5 −

2
6
𝑡𝑡6 +

3
4
𝑡𝑡4 −

3
9
𝑡𝑡9�

0

1
=

29
60

 

The units would be Joules, assuming the force is in Newtons and the distance in meters. 



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 
 

4.4 (21) 

15) Find ∫ 𝐅𝐅 ⋅ d𝐫𝐫 
𝐶𝐶  where 𝐅𝐅 = 𝑥𝑥 𝐱𝐱� + 𝑧𝑧 𝐲𝐲� + 𝑦𝑦 𝐳𝐳� and 𝐶𝐶 is the helical path: 

𝐫𝐫(𝑡𝑡) = cos 𝑡𝑡  𝐱𝐱� + sin 𝑡𝑡 𝐲𝐲� + 𝑡𝑡 𝐳𝐳� with 𝑡𝑡 ∈ [0,𝜋𝜋/2] 

Note that the integrand is the dot product. It is not a vector. Hence the result is a scalar, not a vector. 

1. Parametrise the curve. This is already done by the question: 

𝐫𝐫(𝑡𝑡) = �
cos 𝑡𝑡
sin 𝑡𝑡
𝑡𝑡
� with 𝑡𝑡 ∈ [0,𝜋𝜋/2] 

2. Find the vector differential of path d𝐫𝐫: 

d𝐫𝐫 = 𝛕𝛕 d𝑡𝑡 =
d𝐫𝐫
d𝑡𝑡

d𝑡𝑡 = �
− sin 𝑡𝑡
cos 𝑡𝑡

1
� d𝑡𝑡 

3. Evaluate the integrand 𝐅𝐅 ⋅ d𝐫𝐫 along the curve, remember to do the dot product: 

𝐅𝐅�𝐫𝐫(𝑢𝑢)� ⋅ d𝐫𝐫 = 𝐅𝐅�𝑥𝑥(𝑢𝑢), 𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)� ⋅ d𝐫𝐫 = �
𝑥𝑥
𝑧𝑧
𝑦𝑦
� ⋅ �

− sin 𝑡𝑡
cos 𝑡𝑡

1
� d𝑡𝑡 

We can do the dot product first, and then substitute 𝑥𝑥 = cos 𝑡𝑡, 𝑦𝑦 = sin 𝑡𝑡 and 𝑧𝑧 = 𝑡𝑡, or the other way 
around, both give the same result 

 𝐅𝐅 ⋅ d𝐫𝐫 = (−𝑥𝑥 sin 𝑡𝑡 + 𝑧𝑧 cos 𝑡𝑡 + 𝑦𝑦)d𝑡𝑡 = (− cos 𝑡𝑡 sin 𝑡𝑡 + 𝑡𝑡 cos 𝑡𝑡 + sin 𝑡𝑡)d𝑡𝑡 

4. Calculate the integral: 

�𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶
= � (− cos 𝑡𝑡 sin 𝑡𝑡 + 𝑡𝑡 cos 𝑡𝑡 + sin 𝑡𝑡)d𝑡𝑡

𝜋𝜋/2

0
 

Remember the chain rule: d
d𝑡𝑡

cos2 𝑡𝑡 = −2 sin 𝑡𝑡 cos 𝑡𝑡 

Remember the product rule: d
d𝑡𝑡

(𝑡𝑡 sin 𝑡𝑡) = d
d𝑡𝑡

(𝑡𝑡) sin 𝑡𝑡 + 𝑡𝑡 d
d𝑡𝑡

(sin 𝑡𝑡) = sin 𝑡𝑡 + 𝑡𝑡 cos 𝑡𝑡 

So the integral can be solved directly once we recognise those patterns. 

� (− cos 𝑡𝑡 sin 𝑡𝑡 + 𝑡𝑡 cos 𝑡𝑡 + sin 𝑡𝑡)d𝑡𝑡
𝜋𝜋/2

0
= �

1
2

cos2 𝑡𝑡 + 𝑡𝑡 sin 𝑡𝑡�
0

𝜋𝜋/2
= (0 + 𝜋𝜋/2) − �

1
2
� =

𝜋𝜋 − 1
2

 

 

16) Calculate ∫ 𝑦𝑦 d𝑥𝑥 + 𝑥𝑥2d𝑦𝑦 
𝐶𝐶  along the following curves: 

(i) the parabolic curve given by 𝑦𝑦 = 4𝑥𝑥 − 𝑥𝑥2 running from point (4,0) to (1,3) 

(ii) the straight-line segment running from point (4,0) to (1,3) 

(i) Parabolic curve path. Notice that this curve is going from right to left. 

1. Parametrise the curve:  

We can try to use 𝑥𝑥 as a parameter. 

𝐫𝐫(𝑥𝑥) = � 𝑥𝑥
4𝑥𝑥 − 𝑥𝑥2� with 𝑥𝑥 ∈ [4,1] (warning! Parameter going backwards*) 
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2. Find the differentials of length d𝑥𝑥 and d𝑦𝑦 in terms of the parameter 𝑥𝑥 and its differential d𝑥𝑥: 

d𝑥𝑥 = d𝑥𝑥 

𝑦𝑦 = 4𝑥𝑥 − 𝑥𝑥2 → d𝑦𝑦 = (4 − 2𝑥𝑥)d𝑥𝑥 

Note that this is equivalent to finding the vector differential of path in the usual way: 

d𝐫𝐫 = �d𝑥𝑥
d𝑦𝑦� =

d𝐫𝐫
d𝑥𝑥

d𝑥𝑥 = � 1
4 − 2𝑥𝑥�d𝑥𝑥 

3. Evaluate the integrand 𝐅𝐅 ⋅ d𝐫𝐫 along the curve, the dot product is already done. 

𝑦𝑦 d𝑥𝑥 + 𝑥𝑥2d𝑦𝑦 = �
𝑥𝑥 = 𝑥𝑥

𝑦𝑦 = 4𝑥𝑥 − 𝑥𝑥2
d𝑦𝑦 = (4 − 2𝑥𝑥)d𝑥𝑥

� = (4𝑥𝑥 − 𝑥𝑥2)d𝑥𝑥 + 𝑥𝑥2(4 − 2𝑥𝑥)d𝑥𝑥 = (−2𝑥𝑥3 + 3𝑥𝑥2 + 4𝑥𝑥)d𝑥𝑥 

4. Calculate the integral: (remember that we are using the path −𝐶𝐶 so we need to invert the sign) 

�𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶
= −� 𝐅𝐅 ⋅ d𝐫𝐫

 

−𝐶𝐶
= −� (−2𝑥𝑥3 + 3𝑥𝑥2 + 4𝑥𝑥)d𝑥𝑥

4

1
= − �−

1
2
𝑥𝑥4 + 𝑥𝑥3 + 2𝑥𝑥2�

1

4
=

69
2

 

  

(ii) Straight line path from point (4,0) to (1,3) 

1. Parametrise the curve. We need the equation of a straight line going from 𝐫𝐫1 to 𝐫𝐫2: 

𝐫𝐫(𝑢𝑢) = 𝐫𝐫1 + 𝑢𝑢(𝐫𝐫2 − 𝐫𝐫1) = �4
0� + 𝑢𝑢 ��1

3� − �4
0�� = �4 − 3𝑢𝑢

3𝑢𝑢 � with 𝑢𝑢 ∈ [0,1] 

2. Find the differentials d𝑥𝑥 and d𝑦𝑦 as a function of the parameter 𝑢𝑢 and d𝑢𝑢: 

𝑥𝑥 = 4 − 3𝑢𝑢 → d𝑥𝑥 = −3 d𝑢𝑢 

𝑦𝑦 = 3𝑢𝑢 → d𝑦𝑦 = 3 d𝑢𝑢 

Note that this is equivalent to finding the vector differential of path in the usual way: 

d𝐫𝐫 = �d𝑥𝑥
d𝑦𝑦� =

d𝐫𝐫
d𝑢𝑢

d𝑢𝑢 = �−3
3 �d𝑢𝑢 

*How to solve it: The problem here is that the curve goes from 𝑥𝑥 = 4 to 𝑥𝑥 = 1, so we should be 
very careful with using parameters going backwards. There are two options to solve this. 

Option 1: Mathematically rigorous way. Define a new parameter 𝑢𝑢 which grows from 1 to 4, so 
we can define 𝑥𝑥 = 5 − 𝑢𝑢 such that 𝑢𝑢 = 1 corresponds to 𝑥𝑥 = 4 and viceversa. 

𝐫𝐫(𝑢𝑢) = � 5 − 𝑢𝑢
4(5 − 𝑢𝑢) − (5 − 𝑢𝑢)2� = � 5 − 𝑢𝑢

−𝑢𝑢2 + 6𝑢𝑢 − 5�  

Option 2: Easy way. We define a curve −𝐶𝐶 which corresponds to curve 𝐶𝐶 but going in reverse. 
Therefore, the sign of the integral will need to be changed later ∫ 𝐅𝐅 ⋅ d𝐫𝐫  

𝐶𝐶 = −∫ 𝐅𝐅 ⋅ d𝐫𝐫 
−𝐶𝐶 . 

Curve −𝐶𝐶: 𝐫𝐫(𝑥𝑥) = � 𝑥𝑥
4𝑥𝑥 − 𝑥𝑥2� with 𝑥𝑥 ∈ [1,4] 

Let’s use option 2. 
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3. Evaluate the integrand 𝐅𝐅 ⋅ d𝐫𝐫 along the curve, the dot product is already done. 

𝑦𝑦 d𝑥𝑥 + 𝑥𝑥2d𝑦𝑦 = �

𝑥𝑥 = 4 − 3𝑢𝑢
𝑦𝑦 = 3𝑢𝑢

d𝑥𝑥 = −3 d𝑢𝑢
d𝑦𝑦 = 3 d𝑢𝑢

� = (3𝑢𝑢)(−3 d𝑢𝑢) + (4 − 3𝑢𝑢)2(3 d𝑢𝑢) 

= (−9𝑢𝑢 + 48 − 72𝑢𝑢 + 27𝑢𝑢2)d𝑢𝑢 
= (48 − 81𝑢𝑢 + 27𝑢𝑢2)d𝑢𝑢 

4. Calculate the integral:  

�𝑦𝑦 d𝑥𝑥 + 𝑥𝑥2d𝑦𝑦
 

𝐶𝐶
= � (48 − 81𝑢𝑢 + 27𝑢𝑢2)d𝑢𝑢

1

0
= �48𝑢𝑢 −

81
2
𝑢𝑢2 +

27
3
𝑢𝑢3�

0

1
=

33
2

 

 

17) Evaluate ∫ 𝑥𝑥𝑦𝑦 d𝑥𝑥 + (𝑥𝑥 + 𝑦𝑦)d𝑦𝑦 
𝐶𝐶  along the curve 𝑦𝑦 = 𝑥𝑥2 from (−1,1) to (1,1) 

Since we have the integrand in the form 𝐹𝐹𝑥𝑥  d𝑥𝑥 + 𝐹𝐹𝑦𝑦 d𝑦𝑦, the best parametrisation is to use either 𝑥𝑥 or 
𝑦𝑦 as a parameter. Let’s do both: 

Option A: Use 𝑥𝑥 as parameter. 

1. Parametrise the curve: 𝐫𝐫(𝑥𝑥) = (𝑥𝑥, 𝑥𝑥2) with 𝑥𝑥 ∈ [−1,1] 

2. Find the differentials  𝑦𝑦 = 𝑥𝑥2 →  d𝑦𝑦
d𝑥𝑥

= 2𝑥𝑥 hence d𝑦𝑦 = 2𝑥𝑥 d𝑥𝑥 

3. Evaluate the integrand at the curve (i.e. substitute 𝑦𝑦 = 𝑥𝑥2 and d𝑦𝑦 = 2𝑥𝑥 d𝑥𝑥): 

𝑥𝑥𝑦𝑦 d𝑥𝑥 + (𝑥𝑥 + 𝑦𝑦)d𝑦𝑦 = 𝑥𝑥3 d𝑥𝑥 + (𝑥𝑥 + 𝑥𝑥2) 2𝑥𝑥 d𝑥𝑥 = (3𝑥𝑥3 + 2𝑥𝑥2) d𝑥𝑥 

4. Calculate the integral: 

�𝑥𝑥𝑦𝑦 d𝑥𝑥 + (𝑥𝑥 + 𝑦𝑦)d𝑦𝑦
 

𝐶𝐶
= � (3𝑥𝑥3 + 2𝑥𝑥2) d𝑥𝑥

1

−1
= �

3
4
𝑥𝑥4 +

2
3
𝑥𝑥3�

−1

1
= �

3
4

+
2
3
� − �

3
4
−

2
3
� =

4
3

 

 

 

Option B: Use 𝑦𝑦 as parameter. This gets messy (Option A is the wiser choice) 

1. Parametrise the curve: 

Not being careful we could write 𝐫𝐫(𝑦𝑦) = (�𝑦𝑦,𝑦𝑦) with 𝑦𝑦 ∈ [1,1], but notice that something is wrong 
with the limits. The problem is that to parametrise the parabolic curve 𝑦𝑦 = 𝑥𝑥2 using 𝑦𝑦 as a 
parameter is problematic, because each value of 𝑦𝑦 corresponds to two values of 𝑥𝑥. Hence, we need 
to divide the path into two parts, to have 1-to-1 correspondence, and integrate separately: 

𝐫𝐫1(𝑦𝑦) = (−�𝑦𝑦,𝑦𝑦) with 𝑦𝑦 ∈ [1,0] (warning! Parameter going backwards – see last problem) 

𝐫𝐫2(𝑦𝑦) = (+�𝑦𝑦,𝑦𝑦) with 𝑦𝑦 ∈ [0,1] 

2. Find the differentials: 

For path 𝐫𝐫1(𝑢𝑢): 𝑥𝑥 = −�𝑦𝑦 → d𝑥𝑥 = − 1
2√1−𝑢𝑢

d𝑦𝑦 

For path 𝐫𝐫2(𝑦𝑦): 𝑥𝑥 = �𝑦𝑦 → d𝑥𝑥 = 1
2√𝑦𝑦

d𝑦𝑦 
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3. Evaluate the integrand at the curve: 

For path 𝐫𝐫1(𝑢𝑢):  𝑥𝑥𝑦𝑦 d𝑥𝑥 + (𝑥𝑥 + 𝑦𝑦)d𝑦𝑦 = −�𝑦𝑦 𝑦𝑦 d𝑢𝑢
−2√𝑦𝑦

+ �−�𝑦𝑦 + 𝑦𝑦� d𝑦𝑦 = �3
2
𝑦𝑦 − �𝑦𝑦�dy 

For path 𝐫𝐫2(𝑢𝑢):  𝑥𝑥𝑦𝑦 d𝑥𝑥 + (𝑥𝑥 + 𝑦𝑦)d𝑦𝑦 = �𝑦𝑦 𝑦𝑦 1
2√𝑦𝑦

d𝑦𝑦 + ��𝑦𝑦 + 𝑦𝑦�d𝑦𝑦 = �3
2
𝑦𝑦 + �𝑦𝑦�d𝑦𝑦  

4. Calculate the integral: 

We had a parameter running backwards, therefore we can define curve −𝐶𝐶1 with 𝑦𝑦 ∈ [0,1] as being 
in opposite direction to 𝐶𝐶1, and apply the property: ∫   

𝐶𝐶1
= −∫   

−𝐶𝐶1
, so we can revert the path, to have 

𝑦𝑦 growing, but knowing that we needed to invert the sign of the integral. 

�𝑥𝑥𝑦𝑦 d𝑥𝑥 + (𝑥𝑥 + 𝑦𝑦)d𝑦𝑦
 

𝐶𝐶
= �  

 

𝐶𝐶1
+ �  

 

𝐶𝐶2
= −�  

 

−𝐶𝐶1
+ �  

 

𝐶𝐶1
= −� �

3
2
𝑦𝑦 + 𝑦𝑦

1
2� d𝑦𝑦

1

0
+ � �

3
2
𝑦𝑦 + 𝑦𝑦

1
2� d𝑦𝑦

1

0
 

= −�
3
4
𝑦𝑦4 −

2
3
𝑦𝑦
3
2�
0

1

���������
3
4−

2
3

+ �
3
4
𝑦𝑦4 +

2
3
𝑦𝑦
3
2�
0

1

���������
3
4+

2
3

=
4
3 

Notice that it would have worked to just use the inverted limits ∫ �3
2
𝑦𝑦 + 𝑦𝑦

1
2�d𝑦𝑦0

1 , which is equivalent 

to a negative sign, but this can lead to confusion, so do this at your own risk. 

 

CIRCULATION 

18) Find the circulation of the field 𝐅𝐅 = (𝑥𝑥 − 𝑦𝑦) 𝐱𝐱� + 𝑥𝑥 𝐲𝐲� around the unit circle in the 𝑋𝑋𝑋𝑋 plane 
centred at the origin. 

1. Parametrise the curve. The unit circle is best parametrised in polar coordinates 

𝐫𝐫(𝑡𝑡) = �
cos 𝑡𝑡
sin 𝑡𝑡
𝑡𝑡
� with 𝑡𝑡 ∈ [0,2𝜋𝜋] 

2. Find the vector differential of path d𝐫𝐫: 

d𝐫𝐫 = 𝛕𝛕 d𝑡𝑡 =
d𝐫𝐫
d𝑡𝑡

d𝑡𝑡 = �
− sin 𝑡𝑡
cos 𝑡𝑡

1
� d𝑡𝑡 

3. Evaluate the integrand 𝐅𝐅 ⋅ d𝐫𝐫 along the curve, remember to do the dot product: 

𝐅𝐅�𝐫𝐫(𝑢𝑢)� ⋅ d𝐫𝐫 = 𝐅𝐅�𝑥𝑥(𝑢𝑢),𝑦𝑦(𝑢𝑢), 𝑧𝑧(𝑢𝑢)� ⋅ d𝐫𝐫 = �
𝑥𝑥 − 𝑦𝑦
𝑥𝑥
0

� ⋅ �
− sin 𝑡𝑡
cos 𝑡𝑡

1
� d𝑡𝑡 

We can do the dot product first, and then substitute 𝑥𝑥 = cos 𝑡𝑡, 𝑦𝑦 = sin 𝑡𝑡 and 𝑧𝑧 = 0, or the other way 
around, both give the same result 

 𝐅𝐅 ⋅ d𝐫𝐫 = (−(𝑥𝑥 − 𝑦𝑦) sin 𝑡𝑡 + 𝑥𝑥 cos 𝑡𝑡)d𝑡𝑡 = (−(cos 𝑡𝑡 − sin 𝑡𝑡) sin 𝑡𝑡 + cos2 𝑡𝑡)d𝑡𝑡 = (− cos 𝑡𝑡 sin 𝑡𝑡 +
sin2 𝑡𝑡 + cos2 𝑡𝑡) d𝑡𝑡 = (1 − cos 𝑡𝑡 sin 𝑡𝑡) d𝑡𝑡  

4. Calculate the integral: 

�𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶
= � (1 − cos 𝑡𝑡 sin 𝑡𝑡)d𝑡𝑡

2𝜋𝜋

0
= �𝑡𝑡 −

1
2

sin2 𝑡𝑡�
0

2𝜋𝜋
= 2𝜋𝜋 
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5. VECTOR CALCULUS 

In this chapter, we look at properties and transformations that can be done on scalar and vector fields. 

A. SCALAR AND VECTOR FIELDS 

Scalar field: 𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

 

A scalar value assigned continuously to each point in space. Examples of scalar fields: temperature in 
a room, pressure at each point of a fluid, gravitational potential in the solar system, … 

Vector field: 𝐅𝐅(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) 

 

A vector assigned continuously to each point in space. Example of vector fields: velocity vector of a 
fluid, electric field. 

Typical representation of scalar and vector fields: very simple in 2D space. 

Scalar field:  𝑇𝑇 = 𝑒𝑒−𝑥𝑥2+𝑦𝑦2(1 + sin 𝑥𝑥𝑦𝑦) 

 

Vector field:  𝐅𝐅 = (𝑥𝑥2 + 𝑦𝑦2 + 1)−5/2(𝑦𝑦 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�) 

 

 

Central to all following sections is the vector differential operator 𝛁𝛁 called del or nabla.  

 

  

Operator 𝛁𝛁 (called ‘del’ or ‘nabla’) 

𝛁𝛁 ≡ �
𝜕𝜕/𝜕𝜕𝑥𝑥
𝜕𝜕/𝜕𝜕𝑦𝑦
𝜕𝜕/𝜕𝜕𝑦𝑦

� 
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B. GRADIENT 

The gradient is a transformation which acts on a scalar field 𝜙𝜙(𝐫𝐫), calculated by applying the 𝛁𝛁 
operator to the scalar field 𝜙𝜙: 

 

This operation converts a scalar field into a vector field 𝐚𝐚(𝐫𝐫) = 𝛁𝛁𝜙𝜙(𝐫𝐫). 

 

 

1) Calculate the gradient of the scalar field 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥 − 𝑥𝑥𝑦𝑦 + 𝑧𝑧2 

Solution:  

𝛁𝛁𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≡ �
𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥
𝜕𝜕𝑓𝑓/𝜕𝜕𝑦𝑦
𝜕𝜕𝑓𝑓/𝜕𝜕𝑧𝑧

� = �
1 − 𝑦𝑦
−𝑥𝑥
2𝑧𝑧

� 

 

2) Calculate the gradient of the scalar field 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2 − 𝑥𝑥𝑦𝑦 

Solution: Note that this case is two-dimensional. The gradient can be defined for N-dimensions simply 
by adjusting the size of the “nabla” operator to match the number of dimensions. 
 

𝛁𝛁𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) ≡ �𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥
𝜕𝜕𝑓𝑓/𝜕𝜕𝑦𝑦� = �2𝑥𝑥 − 𝑦𝑦

−𝑥𝑥 � 

  

Gradient: 

grad 𝜙𝜙 = 𝛁𝛁𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≡ �
𝜕𝜕𝜙𝜙/𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙/𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙/𝜕𝜕𝑧𝑧

� 
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INTERPRETATION OF THE GRADIENT: 

 

SIMPLE 2-D EXAMPLE: 

 

With 2D fields, we can use a 3D representation in which we use the third dimension to represent the 
value of the scalar field. Then the gradient is even more intuitive to visualize: 

 

 

Note how the gradient always points away from local minima and towards local maxima. The 
gradient is zero at the stationary points. A common computational algorithm for finding minima in a 
function is to follow the opposite direction of the gradient (method of steepest descent). 

In three dimensions, the gradient is a 3D vector defined in every point in space, pointing along the 
direction of steepest increase of the scalar field 𝜙𝜙(𝐫𝐫).  

• The gradient 𝛁𝛁𝜙𝜙 gives us, for each point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in a scalar field 𝜙𝜙, a vector indicating 
the direction and magnitude of the steepest ascent along the scalar field. 

• Therefore, the gradient is perpendicular to the contour lines of the scalar field 𝜙𝜙. 
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THE DIRECTIONAL DERIVATIVE 

For a scalar field 𝑓𝑓(𝐫𝐫), the directional derivative along a vector 𝐯𝐯�⃗  is a scalar that has many different 
equivalent notations: 

∇𝐯𝐯�⃗ 𝑓𝑓,     𝐷𝐷𝐯𝐯�⃗ 𝑓𝑓,    
𝜕𝜕𝑓𝑓
𝜕𝜕𝐯𝐯�⃗

 

and is defined similarly to a derivative, but moving specifically along the direction 𝐯𝐯: 

 

This is clearly a generalization of partial derivatives, e.g. 𝜕𝜕𝑓𝑓/𝜕𝜕𝑥𝑥 = ∇𝐱𝐱�𝑓𝑓. In fact, by considering the 
increase along 𝑥𝑥, 𝑦𝑦 and 𝑧𝑧 one after the other, we can write the directional derivative in terms of the 
partial derivatives: 

 

 

3) Find the slope of the function 𝑓𝑓(𝑥𝑥,𝑦𝑦) = 𝑦𝑦𝑒𝑒𝑥𝑥+𝑦𝑦 in the direction of 𝐮𝐮 = 2𝐱𝐱� + 𝐲𝐲� at the location 
(𝑥𝑥,𝑦𝑦) = (1,1). 

The gradient is: 

𝛁𝛁𝑓𝑓 = �
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦
� = (𝑦𝑦𝑒𝑒𝑥𝑥+𝑦𝑦, (1 + 𝑦𝑦)𝑒𝑒𝑥𝑥+𝑦𝑦) 

The unit vector in the direction of 𝐮𝐮 is: 

𝐮𝐮� =
𝐮𝐮

|𝐮𝐮| =
(2,1)

√22 + 12
= �2/√5, 1/√5� 

Therefore: 

Slope =  𝛁𝛁𝑓𝑓 ⋅ 𝐯𝐯� = (𝑦𝑦𝑒𝑒𝑥𝑥+𝑦𝑦)
2
√5

 + (1 + 𝑦𝑦)𝑒𝑒𝑥𝑥+𝑦𝑦
1
√5

 

This is the slope in the 𝐮𝐮 direction at every point in space! 

We are asked the slope at (𝑥𝑥,𝑦𝑦) = (1,1), which is: 

Slope =
4𝑒𝑒2

√5
 

∇𝐯𝐯�⃗ 𝑓𝑓 = lim
ℎ→0

𝑓𝑓(𝐫𝐫 + ℎ𝐯𝐯�⃗ ) − 𝑓𝑓(𝐫𝐫)
ℎ  

  

 

∇𝐯𝐯�⃗ 𝑓𝑓 =
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

𝑣𝑣𝑥𝑥 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

𝑣𝑣𝑦𝑦 +
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

𝑣𝑣𝑧𝑧 

When 𝐯𝐯� is a unit vector ∇𝐯𝐯�𝑓𝑓 gives the slope of 𝑓𝑓(𝐫𝐫) along the direction 𝐯𝐯�. 

The dot product between the gradient 𝛁𝛁𝑓𝑓 and the vector 𝐯𝐯 can be used to compute the partial 
derivative along any vector 𝐯𝐯. The gradient gives us all the information about slopes! 

∇𝐯𝐯�⃗ 𝑓𝑓 = 𝛁𝛁𝑓𝑓 ⋅ 𝐯𝐯 

This explains why 𝛁𝛁𝑓𝑓 is always orthogonal to contour lines, along which 𝑓𝑓(𝐫𝐫) is constant. 
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C. DIVERGENCE 

The divergence is a transformation which acts on a vector field 𝐅𝐅(𝐫𝐫). It is calculated in rectangular 
coordinates by applying the dot product between the 𝛁𝛁 operator and the vector field 𝐅𝐅(𝐫𝐫): 

 

The result is a scalar field. Hence the divergence converts the vector field 𝐅𝐅(𝐫𝐫) into a scalar field 𝑓𝑓(𝐫𝐫): 

 

 

4) Calculate the divergence of the vector field 𝐯𝐯(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �3𝑦𝑦, 6𝑦𝑦 − 𝑥𝑥𝑒𝑒𝑦𝑦,√𝑥𝑥𝑧𝑧�  

Solution:  

𝛁𝛁 ⋅ 𝐯𝐯(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≡
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣𝑧𝑧
𝜕𝜕𝑧𝑧

= 0 + (6 − 𝑥𝑥𝑒𝑒𝑦𝑦) + �
𝑥𝑥

2√𝑥𝑥𝑧𝑧
� 

 

5) Calculate the divergence of the vector field 𝐯𝐯(𝑥𝑥,𝑦𝑦) = (𝑦𝑦2 − 𝑥𝑥3𝑦𝑦) 𝐱𝐱� + (6𝑦𝑦 − 3𝑥𝑥2𝑦𝑦) 𝐲𝐲� 

Solution: This is an example in two dimensions: 

𝛁𝛁 ⋅ 𝐯𝐯(𝑥𝑥,𝑦𝑦) ≡
𝜕𝜕𝑣𝑣𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑣𝑣𝑦𝑦
𝜕𝜕𝑦𝑦

= −3𝑥𝑥2𝑦𝑦 + 6 − 3𝑥𝑥2 = 6 − 3𝑥𝑥2(𝑦𝑦 + 1) 

 

  

Divergence: 

div 𝐅𝐅 = 𝛁𝛁 ⋅ 𝐅𝐅(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≡
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑧𝑧
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INTERPRETATION OF DIVERGENCE 

 

 

The visual examples above are clear-cut cases. You can still have a positive (negative) divergence if, 
on average, the strength of the field lines coming out of the point is greater (smaller) than those 
coming out. Examples: 

 

 

DEFINITION OF DIVERGENCE IN TERMS OF FLUX: 

The divergence is defined as the flux surface integral out of the closed surface enclosing a differential 
volume element surrounding each point, normalized by the volume: 

 

 

The divergence 𝛁𝛁 ⋅ 𝐅𝐅 gives us, for each point (𝑥𝑥,𝑦𝑦, 𝑧𝑧) in a vector field 𝐚𝐚, a scalar value 
indicating whether there is a net flux of 𝐚𝐚 out of (positive) or into (negative) a small volume 
surrounding the point.  

• Sources of field lines have 𝛁𝛁 ⋅ 𝐅𝐅 > 0 
• Sinks of field lines have 𝛁𝛁 ⋅ 𝐅𝐅 < 0 

For a vector field 𝐯𝐯(𝑥𝑥,𝑦𝑦, 𝑧𝑧) describing the local velocity at any point in a fluid, the divergence 
𝛁𝛁 ⋅ 𝐯𝐯 tells us whether the density of the liquid is increasing or decreasing at each point (or 
whether fluid is appearing or disappearing to keep the density constant). 

 

𝛁𝛁 ⋅ 𝐅𝐅 = lim
𝑉𝑉→0

1
𝑉𝑉
�𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆
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VISUAL EXAMPLES OF DIVERGENCE IN 2D 

Example 1: 

𝐅𝐅(𝑥𝑥, 𝑦𝑦) = (4𝑥𝑥 − 𝑥𝑥𝑦𝑦2)𝐱𝐱� + (6𝑦𝑦 − 𝑥𝑥2𝑦𝑦)𝐲𝐲�     →     𝛁𝛁 ⋅ 𝐅𝐅 = 10 − 𝑥𝑥2 − 𝑦𝑦2   

 

 

Example 2: 

𝐅𝐅(𝑥𝑥,𝑦𝑦) =
1
2
𝑒𝑒− 

�𝑥𝑥2+𝑦𝑦2�
4  [𝑥𝑥(−4 + 𝑥𝑥2 − 𝑦𝑦4)𝐱𝐱� + 𝑦𝑦(4 + 𝑥𝑥4 − 𝑦𝑦2)𝐲𝐲�]  

→   𝛁𝛁 ⋅ 𝐅𝐅 =
1
4
𝑒𝑒− (𝑥𝑥

2+𝑦𝑦2)
4 (−𝑥𝑥4(−1 + 𝑦𝑦2) − 𝑦𝑦2(10 + 𝑦𝑦2) + 𝑥𝑥2(10 + 𝑦𝑦4)) 
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D. CURL 

The curl is a transformation which acts on a vector field 𝐚𝐚(𝐫𝐫).  It is calculated in rectangular coordinates 
by applying the cross product between the 𝛁𝛁 operator and the vector field 𝐚𝐚(𝐫𝐫): 

 
The result is a vector. Hence, the curl transforms the vector field 𝐅𝐅(𝐫𝐫) into another vector field 𝐛𝐛(𝐫𝐫): 

 

 

6) Calculate the curl of the vector field 𝐚𝐚(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝑥𝑥2𝑦𝑦2𝑧𝑧2𝐱𝐱� + 𝑦𝑦2𝑧𝑧2𝐲𝐲� + 𝑥𝑥2𝑧𝑧2𝐳𝐳� 

Solution:  

𝛁𝛁 × 𝐚𝐚 ≡ ��

𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦 𝑎𝑎𝑧𝑧

�� = �
𝜕𝜕𝑎𝑎𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝑎𝑎𝑦𝑦
𝜕𝜕𝑧𝑧

� 𝐱𝐱� + �
𝜕𝜕𝑎𝑎𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝑎𝑎𝑧𝑧
𝜕𝜕𝑥𝑥

� 𝐲𝐲� + �
𝜕𝜕𝑎𝑎𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑎𝑎𝑥𝑥
𝜕𝜕𝑦𝑦

� 𝐳𝐳� 

= (0 − 2𝑦𝑦2𝑧𝑧)𝐱𝐱� + (2𝑥𝑥2𝑦𝑦2𝑧𝑧 − 2𝑥𝑥𝑧𝑧2)𝐲𝐲� + (0 − 2𝑥𝑥2𝑦𝑦𝑧𝑧2)𝐳𝐳� 

 

 

Note: “Scalar” curl for 2D fields. 

For two-dimensional fields, we can assume that the field is invariant in the 𝑧𝑧-direction ( 𝜕𝜕
𝜕𝜕𝑧𝑧

= 0) and 
that its 𝑧𝑧-component is zero, so that: 

𝛁𝛁 × 𝐅𝐅(𝑥𝑥,𝑦𝑦) = ��

𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

0

𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 0

�� = 𝐳𝐳� �
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

� 

So, for 2D fields, we can see that the curl may, if we want, be interpreted as a scalar field (because it 
always points along 𝑧𝑧 so the direction is not giving us any information). 

  

curl 𝐅𝐅 = 𝛁𝛁 × 𝐅𝐅 ≡ ��

𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝑧𝑧

�� = �
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑧𝑧

� 𝐱𝐱� + �
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑥𝑥

� 𝐲𝐲� + �
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

� 𝐳𝐳� 
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INTERPRETATION OF CURL 

 

To visualize it in 2D, let’s focus only on the z-component of the curl: 

 

The visual examples above are the clearest cases. But you can still have a positive (negative) curl if, on 
average, the strength of the field lines “pushing anticlockwise” are greater (smaller) than those 
“pushing clockwise”. Examples: 

 

DEFINITION OF CURL IN TERMS OF CIRCULATION: 

The component of the curl along a certain direction 𝐧𝐧� is defined as the circulation line integral on a 
closed path around a differential area element normal to 𝐧𝐧� surrounding each point, normalized by 
the area1. The integration sense is performed in the direction given by the right-hand rule with 𝐧𝐧�: 

 

 

                                                            
1 An elegant way to define the curl in all directions simultaneously is 𝛁𝛁 ×  𝐅𝐅 = lim

𝑉𝑉→0
1
𝑉𝑉∯ d𝐒𝐒 × 𝐅𝐅 

𝑆𝑆  

For a vector field 𝐯𝐯(𝑥𝑥,𝑦𝑦, 𝑧𝑧) describing the local velocity at any point in a fluid, the curl 𝛁𝛁 × 𝐯𝐯 
gives us, for each point (𝑥𝑥,𝑦𝑦, 𝑧𝑧), a vector value indicating the angular velocity of the fluid in the 
neighbourhood of that point.  

If a small paddle wheel were placed at various points in the fluid then it would tend to rotate in 
regions where ‖𝛁𝛁 × 𝐯𝐯‖ ≠ 0, rotating in a direction such that the right-hand-rule points in the 
direction of 𝛁𝛁 × 𝐯𝐯, and rotating faster for larger values of ‖𝛁𝛁 × 𝐯𝐯‖. 

(𝛁𝛁 × 𝐅𝐅) ⋅ 𝐧𝐧� = lim
𝐴𝐴→0

1
𝐴𝐴
�𝐅𝐅 ⋅ d𝐫𝐫

 

𝐶𝐶
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REMEMBER THAT CURL IS A VECTOR DEFINED IN 3D 

Previous figures where 2D diagrams. In practice, the curl (unlike the divergence) is a vector. The curl 
points in the direction perpendicular to the rotation following the right-hand rule. 

 

Both 𝐅𝐅 and 𝐜𝐜 = ∇ × 𝐅𝐅 are vector fields. They are both defined at every point in space 𝐅𝐅(𝐫𝐫) and 𝐜𝐜(𝐫𝐫). 
Plotting them together can be very complicated and beautiful: 

 

This figure reminds us of the magnetic field created by a bent coil of current-carrying wire. That is not 
a coincidence, as the magnetic field is given as the curl of the current density vector field. 

 

Many natural laws are most simple and elegant when they are expressed in terms of gradients, 
divergences and curls. For example, Maxwell’s equations for electromagnetism are all defined in 
terms of the curl and the divergence of the electric and magnetic fields. 
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E. DERIVATION OF DIVERGENCE AND CURL FROM THEIR DEFINITION 

DERIVATION OF THE CURL FROM ITS DEFINITION 

Let’s do only the z-component of the curl (the procedure is identical for the other components, just 
rotate your axes). The 𝑧𝑧-component of the curl is defined as the circulation of a field 𝐅𝐅 along a path 
𝑃𝑃(𝑆𝑆) which surrounds a small area 𝑆𝑆 perpendicular to 𝐳𝐳�, in the limit when the area goes to zero. 
Therefore, let’s consider the area to be a square-shaped differential area d𝑆𝑆 of sides d𝑥𝑥 and d𝑦𝑦 parallel 
to the 𝑋𝑋𝑋𝑋 plane, and let’s call the square path surrounding it 𝑃𝑃(d𝑆𝑆). Then we may say that the 
circulation around this tiny curve is a differential circulation d𝐶𝐶, which divided by d𝑆𝑆 gives us the 𝑧𝑧-
component of the curl. 

(𝛁𝛁 × 𝐅𝐅) ⋅ 𝐳𝐳� = lim
𝐴𝐴→0

1
𝐴𝐴
�𝐅𝐅 ⋅ d𝐫𝐫

 

𝐶𝐶
=

1
d𝑆𝑆

� 𝐅𝐅 ⋅ d𝐫𝐫
 

𝑃𝑃(𝑑𝑑𝑆𝑆)�������
d𝐶𝐶

=
1

d𝑆𝑆
d𝐶𝐶 

The circulation on this square path can be calculated as four different line integrals added together. 
What is the value of the field at each location? At one corner of this square we have a vector field 
𝐅𝐅(𝑥𝑥0, 𝑦𝑦0, 𝑧𝑧0) which we may call 𝐅𝐅0. The field throughout this differential rectangle will be almost 
constant, however let’s expand it to first order by considering differential changes: 𝐅𝐅(𝑥𝑥0 + Δ𝑥𝑥,𝑦𝑦0 +
Δ𝑦𝑦, 𝑧𝑧0 + Δ𝑧𝑧) ≈ 𝐅𝐅(𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0) + d𝐅𝐅(Δ𝑥𝑥,Δ𝑦𝑦,Δ𝑧𝑧) = 𝐅𝐅0 + ∂𝐅𝐅

∂𝑥𝑥
Δ𝑥𝑥 + ∂𝐅𝐅

∂𝑦𝑦
Δ𝑦𝑦 + ∂𝐅𝐅

∂𝑧𝑧
Δ𝑧𝑧. When doing the line 

integral, we may consider the vector field to be constant along each side, so the line integral is simply 
a multiplication of the length times the field in the direction of the line (due to the dot product). Then 
we can approximate the field at each side of the rectangle as follows: 

 

The circulation is then given by the dot product of the field with the vector length of each side: 

�𝐅𝐅 ⋅ d𝐫𝐫
 

 
= d𝐶𝐶 = (𝐅𝐅0) ⋅ (d𝑥𝑥 𝐱𝐱�) + �𝐅𝐅0 +

𝜕𝜕𝐅𝐅
𝜕𝜕𝑥𝑥

d𝑥𝑥� ⋅ (d𝑦𝑦 𝐲𝐲�) + �𝐅𝐅0 +
𝜕𝜕𝐅𝐅
𝜕𝜕𝑦𝑦

d𝑦𝑦� ⋅ (−d𝑥𝑥 𝐱𝐱�) + (𝐅𝐅0) ⋅ (−d𝑦𝑦 𝐲𝐲�) 

=  𝐹𝐹0𝑥𝑥d𝑥𝑥 + �𝐹𝐹0𝑦𝑦 +
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

d𝑥𝑥�d𝑦𝑦 + �−𝐹𝐹0𝑥𝑥 −
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

d𝑦𝑦� d𝑥𝑥 + �−𝐹𝐹0𝑦𝑦�d𝑦𝑦 

= �
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

�d𝑥𝑥 d𝑦𝑦 

Which results in the 𝑧𝑧-component of the curl after dividing by d𝑆𝑆 = d𝑥𝑥 d𝑦𝑦. An identical result is 
obtained if we consider other orientations of the surface to find other components of the curl. 

  



MATHEMATICS AND COMPUTATION FOR PHYSICS  SEMESTER 2 - CLASS NOTES 

5 (12) 

DERIVATION OF DIVERGENCE FROM ITS DEFINITION 

𝛁𝛁 ⋅ 𝐅𝐅 ≝ lim
𝑉𝑉→0

1
𝑉𝑉
�𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆
 

Consider a differential cubic volume of sides d𝑥𝑥, d𝑦𝑦 and d𝑧𝑧. The total volume is d𝑉𝑉. 

 

Now we may evaluate the flux across the cubic surface (i.e. a sum over each of the six sides of the 
differential volume). We may call this surface enclosing d𝑉𝑉 as 𝑆𝑆(d𝑉𝑉). The resulting flux on this 
differential surface can be considered a differential of flux dΦ. 

𝛁𝛁 ⋅ 𝐅𝐅 ≝
1

d𝑉𝑉
� 𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆(d𝑉𝑉)���������
dΦ

=
1

d𝑉𝑉
dΦ 

 

The six fluxes over the six sides can be calculated as in the table below (see diagram above for some 
intuition). For each of the six differential surfaces, we may consider the field to be constant across the 
surface, so that the flux is just the product of the field normal to the surface times the surface area. 

Equation of 
surface 

Surface 
normal 𝐧𝐧� Area of surface d𝑆𝑆 Vector field on 

surface 𝐅𝐅 
Flux over surface: 

dΦ = 𝐅𝐅 ⋅ 𝐧𝐧� d𝑆𝑆 

𝑥𝑥 = 𝑥𝑥0 + d𝑥𝑥 𝐱𝐱� d𝑦𝑦 d𝑧𝑧 𝐅𝐅0 +
∂𝐅𝐅
∂𝑥𝑥

d𝑥𝑥 �𝐹𝐹0𝑥𝑥 +
∂𝐹𝐹𝑥𝑥
∂𝑥𝑥

d𝑥𝑥� d𝑦𝑦 d𝑧𝑧 

𝑥𝑥 = 𝑥𝑥0 −𝐱𝐱� d𝑦𝑦 d𝑧𝑧 𝐅𝐅0 −(𝐹𝐹0𝑥𝑥) d𝑦𝑦 d𝑧𝑧 

𝑦𝑦 = 𝑦𝑦0 + d𝑦𝑦 𝐲𝐲� d𝑥𝑥 d𝑧𝑧 𝐅𝐅0 +
∂𝐅𝐅
∂𝑦𝑦

d𝑦𝑦 �𝐹𝐹0𝑦𝑦 +
∂𝐹𝐹𝑦𝑦
∂𝑦𝑦

d𝑦𝑦� d𝑥𝑥 d𝑧𝑧 

𝑦𝑦 = 𝑦𝑦0 −𝐲𝐲� d𝑥𝑥 d𝑧𝑧 𝐅𝐅0 −�𝐹𝐹0𝑦𝑦� d𝑥𝑥 d𝑧𝑧 
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𝑧𝑧 = 𝑧𝑧0 + d𝑥𝑥 𝐳𝐳� d𝑥𝑥 d𝑦𝑦 𝐅𝐅0 +
∂𝐅𝐅
∂𝑧𝑧

d𝑧𝑧 �𝐹𝐹0𝑧𝑧 +
∂𝐹𝐹𝑧𝑧
∂𝑧𝑧

d𝑧𝑧� d𝑥𝑥 d𝑦𝑦 

𝑧𝑧 = 𝑧𝑧0 −𝐳𝐳� d𝑥𝑥 d𝑦𝑦 𝐅𝐅0 −(𝐹𝐹0𝑧𝑧) d𝑥𝑥 d𝑦𝑦 

 

If we add up the six fluxes across the six surfaces of the differential cube (adding the last column of 
the table above), all the appearances of 𝐅𝐅0 cancel out, and we get a total differential flux equal to: 

dΦ = �
∂𝐹𝐹𝑥𝑥
∂𝑥𝑥

+
∂𝐹𝐹𝑦𝑦
∂𝑦𝑦

+
∂𝐹𝐹𝑧𝑧
∂𝑧𝑧
�  d𝑥𝑥 d𝑦𝑦 d𝑧𝑧 

Which after dividing by d𝑉𝑉 = d𝑥𝑥 d𝑦𝑦 d𝑧𝑧 gives us the divergence.  

𝛁𝛁 ⋅ 𝐅𝐅 ≝
dΦ
d𝑉𝑉

= �
∂𝐹𝐹𝑥𝑥
∂𝑥𝑥

+
∂𝐹𝐹𝑦𝑦
∂𝑦𝑦

+
∂𝐹𝐹𝑧𝑧
∂𝑧𝑧
� 

 

F. VECTOR CALCULUS IDENTITIES:  

The following mathematical identities can be checked directly from the definition of the operators. 

PROPERTIES OF DIVERGENCE: PROPERTIES OF CURL: 

𝛁𝛁 ⋅ (𝐚𝐚 + 𝐛𝐛) = 𝛁𝛁 ⋅ 𝐚𝐚 + 𝛁𝛁 ⋅ 𝐛𝐛 
𝛁𝛁 ⋅ (𝜙𝜙𝐚𝐚) = 𝜙𝜙(𝛁𝛁 ⋅ 𝐚𝐚) + 𝐚𝐚 ⋅ (𝛁𝛁𝜙𝜙) 

𝛁𝛁 × (𝐚𝐚 + 𝐛𝐛) = 𝛁𝛁 × 𝐚𝐚 + 𝛁𝛁 × 𝐛𝐛 
𝛁𝛁 × (𝜙𝜙𝐚𝐚) = 𝜙𝜙(𝛁𝛁 × 𝐚𝐚) − 𝐚𝐚 × (𝛁𝛁𝜙𝜙) 

COMBINING CURL, DIVERGENCE AND GRADIENT 

 

• Divergence of gradient: 𝛁𝛁 ⋅ 𝛁𝛁𝜙𝜙 = div�grad(𝜙𝜙)� = 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝜙𝜙
𝜕𝜕𝑧𝑧2

≡ ∇2𝜙𝜙 

o ∇2𝜙𝜙 is called Laplacian operator 

• Curl of curl:  𝛁𝛁 × (𝛁𝛁 × 𝐅𝐅) = 𝛁𝛁(𝛁𝛁 ⋅ 𝐅𝐅) − ∇2𝐅𝐅 where ∇2𝐅𝐅 is called the vector 
Laplacian (Laplacian applied to each component). 

 

Do not worry about memorizing all these identities. I will provide them in the exam if they are needed. 
The only identities you certainly must remember because they are simple and used in physical 
arguments (see later) are the ones in the yellow box above. 

  

• Curl of a gradient is always zero: 𝛁𝛁 × (𝛁𝛁𝜙𝜙) = curl�grad(𝜙𝜙)� = 𝟎𝟎 
• Divergence of a curl is always zero: 𝛁𝛁 ⋅ (𝛁𝛁 × 𝐅𝐅) = div�curl(𝐅𝐅)� = 0 
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G. POTENTIALS AND CONSERVATIVE/IRROTATIONAL/SOLENOIDAL FIELDS  

 

CONSERVATIVE FIELDS AND POTENTIALS 

Many vector fields in physics (gravitational field, electrostatic field, …) are associated with a 
corresponding potential energy (gravitational potential energy, electrostatic potential energy, …). 
These are called fields derived from a potential, or conservative fields: The field 𝐅𝐅 points in the 
direction of steepest descent of a scalar potential 𝜙𝜙, and its magnitude depends on the rate of change 
of the potential. This is mathematically described by a gradient. 

 

The line integral of a conservative field has the special property that it is independent of the path 
chosen, it only depends on the potential difference between the two ends of the path: 

 

Example: work done by gravitational force along a path 𝑊𝑊 = ∫ 𝐅𝐅 ⋅ d𝐫𝐫𝐵𝐵
𝐴𝐴 = 𝜙𝜙𝐴𝐴 − 𝜙𝜙𝐵𝐵. 

Proof: 𝐅𝐅 ⋅ d𝐫𝐫 = −∇𝜙𝜙 ⋅ d𝐫𝐫 = − ��∂ϕ
∂𝑥𝑥
�d𝑥𝑥 + �∂ϕ

∂𝑦𝑦
�d𝑦𝑦 + �∂ϕ

∂𝑥𝑥
�d𝑧𝑧� = −d𝜙𝜙 by recalling the definition of 

the total differential. Therefore 𝐅𝐅 ⋅ d𝐫𝐫 = −d𝜙𝜙 so: ∫ 𝐅𝐅 ⋅ d𝐫𝐫𝐵𝐵
𝐴𝐴 = −∫ d𝜙𝜙𝐵𝐵

𝐴𝐴 = −(𝜙𝜙𝐵𝐵 − 𝜙𝜙𝐴𝐴) 

From path independence we can conclude that the circulation on any closed loop must be zero, 
because the endpoints are at the same potential: 

 

 

FINDING THE POTENTIAL FROM THE FIELD: 

We can find the potential at any point (up to an arbitrary constant), given the field, by doing a path 
integral: 

𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜙𝜙𝑂𝑂 − � 𝐅𝐅 ⋅ d𝐫𝐫
(𝑥𝑥,𝑦𝑦,𝑧𝑧)

𝑂𝑂
 

We can choose any path. The most convenient to solve analytically is generally (0,0,0) → (𝑥𝑥, 0,0) →
(𝑥𝑥,𝑦𝑦, 0) → (𝑥𝑥,𝑦𝑦, 𝑧𝑧) or similar, where only one variable at a time is varying while others are constant. 

 

  

Conservative field  ⟺   𝐅𝐅 = −∇𝜙𝜙 

Conservative field ⟺� 𝐅𝐅 ⋅ d𝐫𝐫
𝐵𝐵

𝐴𝐴
= 𝜙𝜙𝐴𝐴 − 𝜙𝜙𝐵𝐵      for every path joining A and B 

Conservative field ⟺�𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶
= 0  for every closed path 𝐶𝐶 
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IRROTATIONAL FIELDS 

A field is called irrotational (or curl-free) when its rotational is zero: 

 

It is easy to prove that all conservative fields are irrotational, because the curl of a gradient is zero 
(one of the vector identities). But are all irrotational fields conservative? The answer is yes* but only 
if the region in which the field is defined is a “simply connected region” (i.e. it has no holes). In that 
case, every irrotational field is conservative. In summary: 

 

 

SOLENOIDAL FIELDS 

A field is called solenoidal (or divergence-free) when its divergence is zero: 

 

From the intuition we have on the divergence, this means that the field has no isolated sources nor 
sinks. The field lines are always closed (no open ends). In turn, this means that the surface flux on any 
closed surface must be zero because any “field line” entering the volume must exit it elsewhere (also 
see Gauss’ theorem). 

 

 

SIGNIFICANCE IN PHYSICS 

Real liquid flows are “incompressible”, so no change in pressure can happen, and liquid cannot be 
created or destroyed: thus, real liquid flows are typically modelled as solenoidal 𝛁𝛁 ⋅ 𝐯𝐯 = 0. 

As far as we know, magnetic fields do not have sources nor sinks (no magnetic monopoles), and so 
𝛁𝛁 ⋅ 𝐁𝐁 = 0 is one of Maxwell’s equations of electromagnetism. On the other hand, electric charges act 
like sources (positive) and sinks (negative) of electric field, and so the electric field is not solenoidal; 
in fact 𝛁𝛁 ⋅ 𝐄𝐄 = 𝜌𝜌/𝜀𝜀, where 𝜌𝜌(𝐫𝐫) is the charge density distribution. 

 

EXPANSION OF FIELD INTO SOLENOIDAL AND IRROTATIONAL COMPONENTS: 

Every field in a simply connected region can be decomposed into a sum of an irrotational and a 
solenoidal part: 𝐀𝐀(𝐫𝐫) = 𝐀𝐀𝑐𝑐(𝐫𝐫) + 𝐀𝐀𝑠𝑠(𝐫𝐫) with ∇ × 𝐀𝐀𝑐𝑐(𝐫𝐫) = 0 and ∇ ⋅ 𝐀𝐀𝑠𝑠(𝐫𝐫) = 0. 

Irrotational field  ⟺   𝛁𝛁 × 𝐅𝐅 = 0 

𝛁𝛁 × 𝐅𝐅 = 0
Irrotational field      

  ∗   
��

       
��     𝐅𝐅 = −∇𝜙𝜙

Conservative field
  ⟺    � 𝐅𝐅 ⋅ d𝐫𝐫

𝐵𝐵

𝐴𝐴
= 𝜙𝜙𝐴𝐴 − 𝜙𝜙𝐵𝐵

Path independence
           

Solenoidal field  ⟺   𝛁𝛁 ⋅ 𝐅𝐅 = 0 

𝛁𝛁 ⋅ 𝐅𝐅 = 0
Solenoidal field       ⟺      No sources nor sinks

Closed field lines (no open ends)   ⟺    �𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆
= 0

Closed surface
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H. STOKES’ THEOREM AND DIVERGENCE THEOREM 

Optional read: Not in the exam. You will study these two fundamental theorems in 2nd Year. 

STOKES THEOREM: 

Let’s build up the steps needed to arrive at Stokes’ theorem: 

If we add the circulation of a field around two adjacent paths 𝐶𝐶1 and 𝐶𝐶2 in the same sense (e.g. 
anticlockwise), the section of the path at the shared boundary between the two paths is traversed in 
opposite directions, and so the contributions from that shared boundary to the total line integral will 
cancel out after the addition (as they are of equal magnitude but opposite sign). The resulting addition 
of the circulations will therefore be equal to the circulation across a bigger path enclosing both paths, 
like this: 

  

� 𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶1
+ � 𝐅𝐅 ⋅ d𝐫𝐫

 

𝐶𝐶2
 = � 𝐅𝐅 ⋅ d𝐫𝐫

 

𝐶𝐶tot
 

 

This argument can be extended to an arbitrary number of neighbouring paths, as long as they are all 
defined in the same direction, and as long as they do not leave an gaps between them (in maths 
speech, they define a “simply connected region”). The shared inner boundaries are always traversed 
exactly twice, once in each of the opposite directions, and hence they all cancel out, leaving only the 
circulation around their common outer boundary: 

 

��� 𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶𝑖𝑖
�

𝑁𝑁

𝑖𝑖=1

 = � 𝐅𝐅 ⋅ d𝐫𝐫
 

𝐶𝐶tot
 

 

This argument is not limited to planar 2D space. It works for any collection of paths in three 
dimensions, covering an arbitrary “simply connected” surface 𝑆𝑆 with no gaps, and with an exterior 
boundary curve 𝐶𝐶tot.  
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The first fundamental leap towards Stokes’ theorem is to take the limit when these areas become 
infinitely small, i.e. exactly equivalent to division of a surface into differentials of surface d𝑆𝑆: 

 

In each differential of surface d𝑆𝑆 we need to evaluate the differential circulation d𝐶𝐶 ≡ lim
𝐴𝐴→0

∮ 𝐅𝐅 ⋅ d𝐫𝐫 
𝐶𝐶𝑖𝑖

 

around its differential boundary, and then we need to add them together. Since they are differentials, 
we need to add them together via a surface integral ∑ 𝐶𝐶𝑖𝑖 → ∬ d𝐶𝐶 

𝑆𝑆
𝑁𝑁
𝑖𝑖=1 . But following the logic above, 

the total surface integral, sum of all the circulations, will still be equal to the circulation around the 
exterior path 𝐶𝐶tot, because all the shared boundaries cancel out, even after taking the limit: 

�d𝐶𝐶
 

𝑆𝑆
 = � 𝐅𝐅 ⋅ d𝐫𝐫

 

𝐶𝐶tot
 (1) 

The second fundamental leap is to notice that the differential circulation around a differential surface 
d𝑆𝑆 normal to a vector 𝐧𝐧� (normal to the surface) is exactly the definition of the curl projected in the 
direction 𝐧𝐧� at each point (multiplied by the differential area d𝑆𝑆).  Let’s clarify this: the curl in a given 
direction is defined as the circulation around an area (we can call the area 𝑆𝑆 and the path around it 
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𝐶𝐶(𝑆𝑆)) when the area 𝑆𝑆 tends to zero. This definition can be re-interpreted in terms of ratios of 
differentials.  

(𝛁𝛁 × 𝐅𝐅) ⋅ 𝐧𝐧� = lim
𝑆𝑆→0

1
𝑆𝑆
� 𝐅𝐅 ⋅ d𝐫𝐫

 

𝐶𝐶(𝑆𝑆)
=

1
d𝑆𝑆

� 𝐅𝐅 ⋅ d𝐫𝐫
 

C(d𝑆𝑆)�������
d𝐶𝐶

=
1

d𝑆𝑆
 d𝐶𝐶 

Hence, the curl in a given direction 𝐧𝐧� is the ratio between the differential circulation d𝐶𝐶 around a 
differential surface d𝑆𝑆 normal to 𝐧𝐧� and the differential surface d𝑆𝑆 itself: 

 

We can rewrite this as d𝐶𝐶 = (𝛁𝛁 × 𝐅𝐅) ⋅ 𝐧𝐧� d𝑆𝑆 = (𝛁𝛁 × 𝐅𝐅) ⋅ d𝐒𝐒, following the usual definition d𝐒𝐒 = 𝐧𝐧� d𝑆𝑆, 
which we can substitute into Eq. (1) above to arrive at Stokes’ theorem: 

 

According this theorem, 𝑆𝑆 is any simply connected surface in three dimensions which is bounded by 

the closed path 𝐶𝐶. ∮ 𝐅𝐅 ⋅ d𝐫𝐫 
𝐶𝐶  is the circulation of any vector field along the closed path 𝐶𝐶, while 

∬ (𝛁𝛁 × 𝐅𝐅) ⋅ d𝐒𝐒 
𝑆𝑆  is the flux of the curl of the same vector field through the surface 𝑆𝑆.  

 

With Stokes’ theorem, we can convert a surface integral into a contour line integral, and vice-versa, 
as long as we know the vector field at the contour, and its curl at a surface enclosed by the contour. 

The calculation of the flux always has a sign ambiguity. We must always take the orientation of the 
normal to the surface in accordance to the right-hand rule, when the fingers of the hand are curling 
in the direction of the closed path 𝐶𝐶, the thumb will point in the direction of d𝐒𝐒.  

(𝛁𝛁 × 𝐅𝐅) ⋅ 𝐧𝐧� =
d𝐶𝐶
d𝑆𝑆

 

 

STOKES THEOREM 

� (𝛁𝛁 × 𝐅𝐅) ⋅ d𝐒𝐒
 

𝑆𝑆
 = �𝐅𝐅 ⋅ d𝐫𝐫

 

𝐶𝐶
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DIVERGENCE THEOREM (ALSO KNOWN AS GAUSS’ THEOREM OR OSTROGRADSKY’S THEOREM) 

The explanation for the divergence’s theorem is very similar to that of Stokes’. This is no coincidence, 
because both theorems are in reality different aspects of one same unified generalised theorem. 

We start by consider what happens when we add the outward flux of a field out of two adjacent closed 
surfaces 𝑆𝑆1 and 𝑆𝑆2 (in this case, two touching cubes): 

 

� 𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆1
+ � 𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆2
= � 𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆tot
 

We can see that the surface of the cubes where they both come into contact (the shared boundary 
between the two closed surfaces) will be integrated twice when adding the two flux integrals, but with 
an opposite normal vector 𝐧𝐧� (we calculate the flux outwards from each closed surface), and so the 
contributions from that shared surface to the total flux will cancel out after the addition of the two 
fluxes (as they are of equal magnitude but opposite sign). The resulting addition of the flux will 
therefore be equal to the flux outwards from the bigger surface 𝑆𝑆tot that encloses both surfaces. 

This argument can be extended to an arbitrary number of neighbouring volumes as long as they don’t 
leave gaps between them. The sum of the fluxes over many closed surfaces will be equal to the flux 
out of the total volume they cover. This is because the flux over their shared inner surfaces is always 
integrated exactly twice, once with each of the two opposite directions of the normal vector, and 
hence all inner surface fluxes will cancel out, leaving only the flux around their outer common surface 
boundary. This is as true for cubes as for any other arbitrary shapes which fit together without gaps: 

              

��� 𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆𝑖𝑖
�

𝑁𝑁

𝑖𝑖=1

 = � 𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆tot
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The first fundamental leap towards the divergence theorem is to take the limit when all the surfaces 
𝑆𝑆𝑖𝑖 become infinitely small, surrounding differentials of volume d𝑉𝑉: 

 

Now, in each differential of volume d𝑉𝑉 we need to evaluate the differential flux dΦ ≡ lim
𝐴𝐴→0

∯ 𝐅𝐅 ⋅ d𝐒𝐒 
𝑆𝑆  

around its differential outer surface, and then we need to add them together. Since they are 
differentials, we need to add them together via a volume integral. But following the logic above, the 
total volume integral, sum of all the fluxes for each d𝑉𝑉, will be equal to the total flux across the exterior 
surface 𝑆𝑆tot, because all the inner shared boundary surfaces cancel out, even after taking the limit: 

�d𝛷𝛷
 

𝑉𝑉
 = � 𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆tot
 (2) 

The second fundamental leap is to notice that the differential flux around a differential volume 
element d𝑉𝑉 is exactly the definition of the divergence at each point (multiplied by the differential 
volume d𝑉𝑉).  Let’s explain this: the divergence at any point is defined as the flux out of a surface 
enclosing a volume (we can call the volume 𝑉𝑉 and the surface which encloses it 𝑆𝑆(𝑉𝑉)) divided by the 
volume when the volume 𝑉𝑉 tends to zero. This definition can be re-interpreted in terms of ratios of 
differentials.  

𝛁𝛁 ⋅ 𝐅𝐅 = lim
𝑉𝑉→0

1
𝑉𝑉
� 𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆(𝑉𝑉)
=

1
d𝑉𝑉

� 𝐅𝐅 ⋅ d𝐒𝐒
 

𝑆𝑆(d𝑉𝑉)���������
dΦ

=
1

d𝑉𝑉
dΦ 

Hence, the divergence is the ratio between the differential flux dΦ out of a differential volume d𝑉𝑉 
and the differential volume itself: 

 

We can rewrite this as dΦ = 𝛁𝛁 ⋅ 𝐅𝐅 d𝑉𝑉, which we can substitute into Eq. (2) above to finally arrive at 
the divergence theorem: 

  

𝛁𝛁 ⋅ 𝐅𝐅 =
dΦ
d𝑉𝑉
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In this theorem, 𝑉𝑉 is a simply connected volume in three dimensions, which is bounded by a closed 
surface 𝑆𝑆. The term ∯ 𝐅𝐅 ⋅ d𝐒𝐒 

𝑆𝑆  is the flux of any vector field outwards from the closed surface 𝑆𝑆, while 
∭ (𝛁𝛁 ⋅ 𝐅𝐅) d𝑉𝑉 

𝑉𝑉  is the volume integral of the divergence of the same vector field on the inside of the 
entire volume 𝑉𝑉. The orientation of d𝐒𝐒 for the surface flux integral must always be taken pointing 
towards the outside of the volume. 

Intuitively, the theorem states that the sum of all sources (with sinks regarded as negative sources) 
gives the net flux out of a region. 

 

With the divergence theorem we can convert a volume integral into a flux surface integral, and vice-
versa, as long as we know the vector field at the surface, and its divergence inside the volume. 

 

GREEN’S THEOREM: 

Stokes’ and the divergence theorems can be applied to two-dimensional fields in the 𝑋𝑋𝑋𝑋 plane. For 
Stokes’ theorem, the surface integral and circulation become a double integral and a circulation in the 
𝑋𝑋𝑋𝑋 plane.  

� �
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

�
���������

curl 𝐅𝐅

d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴
 = �𝐹𝐹𝑥𝑥d𝑥𝑥 + 𝐹𝐹𝑦𝑦d𝑦𝑦

 

𝐶𝐶
 

For the divergence theorem, the closed surface flux becomes a “2D flux” outside of a closed curve (a 
line integral), and the volume integral becomes a double integral, both in the 𝑋𝑋𝑋𝑋 plane: 

� �
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑦𝑦

�
���������

div 𝐅𝐅

d𝑥𝑥 d𝑦𝑦
 

𝐴𝐴
= �𝐹𝐹𝑥𝑥d𝑦𝑦 − 𝐹𝐹𝑦𝑦d𝑥𝑥

 

𝐶𝐶
 

Notice that both equations are equivalent if we swap 𝐹𝐹𝑦𝑦 → 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑥𝑥 → −𝐹𝐹𝑦𝑦. In fact, 𝐹𝐹𝑥𝑥 and 𝐹𝐹𝑦𝑦 could 
be anything, not necessarily components of a field. They can be any two independent functions 𝐹𝐹𝑥𝑥 =
𝐿𝐿(𝑥𝑥, 𝑦𝑦) and 𝐹𝐹𝑦𝑦 = 𝑀𝑀(𝑥𝑥,𝑦𝑦). With that substitution, we arrive at the so-called Green’s Theorem. 

  

DIVERGENCE THEOREM 

� (𝛁𝛁 ⋅ 𝐅𝐅) d𝑉𝑉
 

𝑉𝑉
= �𝐅𝐅 ⋅ d𝐒𝐒

 

𝑆𝑆
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I. CONTINUITY EQUATION 

Optional read: Not in the exam. You will study this, with examples, in 2nd Year. 

Now we are going to add time as a parameter. Very often, vector fields are not static 𝐉𝐉(𝐫𝐫), but instead 
change with time 𝐉𝐉(𝐫𝐫, 𝑡𝑡). 

Let’s assume that the vector field 𝐉𝐉(𝐫𝐫, 𝑡𝑡) represents the flow of some quantity which is conserved. We 
could use any conserved quantity (e.g. mass, energy, charge) but for the sake of example, let’s use the 
charge flowing per unit area and per unit time at each point, also called the current density. Then, 
whenever there is a non-zero flux of this vector across of a closed surface, this necessarily means that 
the total amount of charge must be changing inside the volume, due to conservation of charge. This 
will be a change with time. It can be written mathematically as: 

d𝑄𝑄𝑉𝑉
d𝑡𝑡

= −�𝐉𝐉 ⋅ d𝐒𝐒
 

𝑆𝑆
 

where the variable 𝑄𝑄𝑉𝑉 represents the total amount of charge inside the volume 𝑉𝑉 enclosed by 𝑆𝑆. The 
above equation reads: “the change in time of the total amount 𝑄𝑄𝑉𝑉 of a conserved quantity in a given 
volume 𝑉𝑉 must be equal to the amount of that quantity flowing into the volume per unit time (that is, 
the outward flux on the enclosing surface 𝑆𝑆 with a minus sign)”. 

Since the variable 𝑄𝑄𝑉𝑉 is the total charge inside the volume, we can write it as a volume integral of the 
charge density 𝜌𝜌 (amount of charge per unit volume): 

𝑄𝑄𝑉𝑉 = �𝜌𝜌 d𝑉𝑉
 

𝑉𝑉
 

Hence the continuity equation can be written as: 

 

If we now apply the divergence theorem to the right-hand side: 

�𝐉𝐉 ⋅ d𝐒𝐒
 

𝑆𝑆
= �∇ ⋅ 𝐉𝐉 d𝑉𝑉

 

𝑉𝑉
 

We arrive at (we can take the time derivative inside the integral due to linearity): 

d
d𝑡𝑡
�𝜌𝜌 d𝑉𝑉

 

𝑉𝑉
= �

d𝜌𝜌
d𝑡𝑡

 d𝑉𝑉
 

𝑉𝑉
= −�∇ ⋅ 𝐉𝐉 d𝑉𝑉

 

𝑉𝑉
 

Since the equation must be true for any volume 𝑉𝑉, we can make the volume infinitesimally small, and 
so the integrands must be equal at every point, resulting in the elegant continuity condition: 

 

CONTINUITY CONDITION (INTEGRAL FORM) 

d
d𝑡𝑡
�𝜌𝜌 d𝑉𝑉

 

𝑉𝑉
= −�𝐉𝐉 ⋅ d𝐒𝐒

 

𝑆𝑆
 

 

CONTINUITY CONDITION (DIFFERENTIAL FORM) 

d𝜌𝜌
d𝑡𝑡

= −∇ ⋅ 𝐉𝐉 
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PROBLEMS 

7) Find the gradient of the following scalar fields: 

a) 𝜙𝜙 = 1 

b) 𝜙𝜙 = 𝑥𝑥 + 𝑦𝑦 + 𝑧𝑧 

c) 𝜙𝜙 = 𝑒𝑒−𝑥𝑥𝑦𝑦𝑧𝑧 

d) 𝜙𝜙 = 𝑒𝑒𝑥𝑥(𝑦𝑦2 + ln 𝑧𝑧𝑦𝑦) 

Solution:  

𝛁𝛁𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≡ �
𝜕𝜕𝜙𝜙/𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙/𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙/𝜕𝜕𝑧𝑧

� 

a) 𝛁𝛁𝜙𝜙 = (0,0,0) 

b) 𝛁𝛁𝜙𝜙 = (1,1,1) 

c) 𝛁𝛁𝜙𝜙 = (−𝑦𝑦𝑧𝑧𝑒𝑒−𝑥𝑥𝑦𝑦𝑧𝑧,−𝑥𝑥𝑧𝑧𝑒𝑒−𝑥𝑥𝑦𝑦𝑧𝑧,−𝑥𝑥𝑦𝑦𝑒𝑒−𝑥𝑥𝑦𝑦𝑧𝑧) 

d) 𝛁𝛁𝜙𝜙 = �(𝑦𝑦2 + ln 𝑧𝑧𝑦𝑦)𝑒𝑒𝑥𝑥 , 2𝑒𝑒𝑥𝑥𝑦𝑦 + 𝑒𝑒𝑥𝑥

𝑦𝑦
, 𝑒𝑒

𝑥𝑥

𝑧𝑧
� 

 

8) Find the slope of 𝜙𝜙 = 𝑥𝑥3𝑦𝑦 + 𝑦𝑦𝑧𝑧2 + 𝑧𝑧 in the direction of the following vector 𝐮𝐮 = (1,1,1) at the 
origin. 

Solution: First find the gradient: 

𝛁𝛁𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) ≡ �
𝜕𝜕𝜙𝜙/𝜕𝜕𝑥𝑥
𝜕𝜕𝜙𝜙/𝜕𝜕𝑦𝑦
𝜕𝜕𝜙𝜙/𝜕𝜕𝑧𝑧

� = �
3𝑥𝑥2𝑦𝑦
𝑥𝑥3 + 𝑧𝑧2
2𝑦𝑦𝑧𝑧 + 1

� 

Now find the unit vector in the direction of 𝐮𝐮 

𝐮𝐮� =
𝐮𝐮
‖𝐮𝐮‖

=
1
√3

�
1
1
1
� 

The slope is equal to the directional derivative in the direction of 𝐮𝐮�, which is the dot product between 
the gradient and the unit vector. 

Slope =  𝛁𝛁𝜙𝜙 ⋅ 𝐮𝐮� =
1
√3

(3𝑥𝑥2𝑦𝑦 + 𝑥𝑥3 + 𝑧𝑧2 + 2𝑦𝑦𝑧𝑧 + 1) 

This is the slope in the 𝐮𝐮� direction at every point in space! We are asked the slope at (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =
(0,0,0), so we substitute 𝑥𝑥 = 𝑦𝑦 = 𝑧𝑧 = 0 (note we must do all the calculations of gradient before 
substituting the specific point, otherwise we could not calculate derivatives): 

Slope =
1
√3
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9) Find the divergence and the curl of the following vector fields: 

a) 𝐅𝐅 = (−𝑦𝑦, 𝑥𝑥𝑦𝑦, 𝑧𝑧) 

b) 𝐅𝐅 = (𝑦𝑦, 𝑒𝑒𝑥𝑥𝑦𝑦, 1) 

c) 𝐅𝐅 = 2𝑥𝑥𝑒𝑒𝑥𝑥𝑦𝑦 𝐱𝐱� + 𝑥𝑥𝑦𝑦2 cos 𝑧𝑧  𝐲𝐲� − (𝑦𝑦 + 𝑧𝑧)𝐳𝐳� 

Calculation of the divergence: 

div 𝐅𝐅 = 𝛁𝛁 ⋅ 𝐅𝐅 =
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑧𝑧

 

a) 𝛁𝛁 ⋅ 𝐅𝐅 = 0 + 𝑥𝑥 + 1 = 𝑥𝑥 + 1 

b) 𝛁𝛁 ⋅ 𝐅𝐅 = 0 + 𝑥𝑥𝑒𝑒𝑥𝑥𝑦𝑦 + 0 = 𝑥𝑥𝑒𝑒𝑥𝑥𝑦𝑦 

c) 𝛁𝛁 ⋅ 𝐅𝐅 = 2𝑥𝑥𝑦𝑦𝑒𝑒𝑥𝑥 + 2𝑦𝑦𝑒𝑒𝑥𝑥 + 2𝑥𝑥𝑦𝑦 cos 𝑧𝑧 − 1 = 2𝑦𝑦𝑒𝑒𝑥𝑥(𝑥𝑥 + 1) + 2𝑥𝑥𝑦𝑦 cos 𝑧𝑧 − 1 

Calculation of the curl:  

𝛁𝛁 × 𝐅𝐅 ≡ ��

𝐱𝐱� 𝐲𝐲� 𝐳𝐳�
𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝑧𝑧

�� = �
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑧𝑧

� 𝐱𝐱� + �
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑥𝑥

� 𝐲𝐲� + �
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

� 𝐳𝐳� 

a) 𝛁𝛁 × 𝐅𝐅 = (0 − 0)𝐱𝐱� + (0 − 0)𝐲𝐲� + (𝑦𝑦 − −1)𝐳𝐳� = (𝑦𝑦 + 1)𝐳𝐳� 

b) 𝛁𝛁 × 𝐅𝐅 = (0 − 0)𝐱𝐱� + (0 − 0)𝐲𝐲� + (𝑦𝑦𝑒𝑒𝑥𝑥𝑦𝑦 − 1)𝐳𝐳� = (𝑦𝑦𝑒𝑒𝑥𝑥𝑦𝑦 − 1)𝐳𝐳� 

c) 𝛁𝛁 × 𝐅𝐅 = (−1 − −𝑥𝑥𝑦𝑦2 sin 𝑧𝑧)𝐱𝐱� + (0 − 0)𝐲𝐲� + (𝑦𝑦2 cos 𝑧𝑧 − 2𝑥𝑥𝑒𝑒𝑥𝑥)𝐳𝐳� 

 

10) The gravitational field can be defined in terms of the gravitational potential as 𝐠𝐠 = −∇𝜙𝜙. Obtain 
the gravitational field for a point mass whose gravitational potential is, in spherical coordinates: 

𝜙𝜙 = −
𝐺𝐺𝑀𝑀
𝑟𝑟

 

Solution: We need to calculate the gradient of this potential. Remember the gradient is a vector. 

𝐠𝐠 = −∇𝜙𝜙 = −�
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

,
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

,
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧
� = −�

𝜕𝜕
𝜕𝜕𝑥𝑥

�−
𝐺𝐺𝑀𝑀
𝑟𝑟
� ,

𝜕𝜕
𝜕𝜕𝑦𝑦

�−
𝐺𝐺𝑀𝑀
𝑟𝑟
� ,

𝜕𝜕
𝜕𝜕𝑧𝑧
�−

𝐺𝐺𝑀𝑀
𝑟𝑟
��

= 𝐺𝐺𝑀𝑀�
𝜕𝜕
𝜕𝜕𝑥𝑥

�
1
𝑟𝑟
� ,

𝜕𝜕
𝜕𝜕𝑦𝑦

�
1
𝑟𝑟
� ,

𝜕𝜕
𝜕𝜕𝑧𝑧
�

1
𝑟𝑟
�� 

In spherical coordinates, 𝑟𝑟 = �𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 so that 1
𝑟𝑟

= (𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2)−1/2 

Hence, 𝜕𝜕
𝜕𝜕𝑥𝑥
�1
𝑟𝑟
� = −1

2
(2𝑥𝑥)(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2)−3/2, and similarly for the other components. 

𝐠𝐠 = −
𝐺𝐺𝑀𝑀

(𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2)3/2 (𝑥𝑥,𝑦𝑦, 𝑧𝑧) 

We can convert this to spherical coordinates and spherical basis. We know that (𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝐫𝐫 = 𝑟𝑟𝐞𝐞�𝑟𝑟  
and 𝑥𝑥2 + 𝑦𝑦2 + 𝑧𝑧2 = 𝑟𝑟2, therefore: 
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𝐠𝐠 = −
𝐺𝐺𝑀𝑀
𝑟𝑟3

𝑟𝑟𝐞𝐞�𝑟𝑟 = −
𝐺𝐺𝑀𝑀
𝑟𝑟2

𝐞𝐞�𝑟𝑟 

Which is the known gravitational field of a point mass. 

 

11) A vector field is given by 𝐅𝐅(𝐫𝐫) = (𝑦𝑦2 − 2𝑥𝑥𝑦𝑦𝑧𝑧3, 3 + 2𝑥𝑥𝑦𝑦 − 𝑥𝑥2𝑧𝑧3, 6𝑧𝑧3 − 3𝑥𝑥2𝑦𝑦𝑧𝑧2). Verify whether 
it derives from a potential and find the potential if it exists. 

Solution: To verify whether it derives from a potential, we need to check that it is curl-free: 

curl(𝐅𝐅) = �
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�

𝜕𝜕/𝜕𝜕𝑥𝑥 𝜕𝜕/𝜕𝜕𝑦𝑦 𝜕𝜕/𝜕𝜕𝑧𝑧
𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝑧𝑧

� = �
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑧𝑧

� 𝐱𝐱� + �
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑥𝑥

� 𝐲𝐲� + �
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

� 𝐳𝐳� 

= (−3𝑥𝑥2𝑧𝑧2 + 3𝑥𝑥2𝑧𝑧2)𝐱𝐱� + (−6𝑥𝑥𝑦𝑦𝑧𝑧2 + 6𝑥𝑥𝑦𝑦𝑧𝑧2)𝐲𝐲� + (2𝑦𝑦 − 2𝑥𝑥𝑧𝑧3 − 2𝑦𝑦 + 2𝑥𝑥𝑧𝑧3)𝐳𝐳� = 𝟎𝟎 

Now we need to find the potential by performing a line integral of 𝐅𝐅 ⋅ d𝐫𝐫 along a path from (0,0,0) to 
(𝑥𝑥,𝑦𝑦, 𝑧𝑧). 

� 𝐅𝐅(𝐫𝐫′) ⋅ d𝐫𝐫′
𝐫𝐫

0
= 𝜙𝜙(𝟎𝟎) − 𝜙𝜙(𝐫𝐫) 

I have used 𝐫𝐫′ = (𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′) for the variable being integrated, to distinguish it from the end-point of 
integration 𝐫𝐫 which will be the coordinate of the potential. So, we can calculate the potential at any 
point (up to an arbitrary additive constant): 

𝜙𝜙(𝐫𝐫) = 𝜙𝜙(𝟎𝟎)���
arbitrary
constant

− � 𝐅𝐅(𝐫𝐫′) ⋅ d𝐫𝐫′
𝐫𝐫

0
 

Since the field is conservative, all paths of this line integral will give the same result. We can choose 
the most convenient path in which only one variable changes at a time: (0,0,0) → (𝑥𝑥, 0,0) →
(𝑥𝑥,𝑦𝑦, 0) → (𝑥𝑥,𝑦𝑦, 𝑧𝑧) so that: 

𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜙𝜙𝑂𝑂 − � 𝐅𝐅 ⋅ d𝐫𝐫′
(𝑥𝑥,0,0)

(0,0,0)
−� 𝐅𝐅 ⋅ d𝐫𝐫′

(𝑥𝑥,𝑦𝑦,0)

(𝑥𝑥,0,0)
−� 𝐅𝐅 ⋅ d𝐫𝐫′

(𝑥𝑥,𝑦𝑦,𝑧𝑧)

(𝑥𝑥,𝑦𝑦,0)
 

Let’s perform the integrals.  

Long method: Remember the general method for calculation of line integrals after parametrizing the 
curve 𝐫𝐫(𝑢𝑢). So let’s parametrize each one: 

 

First integral: parametrize the curve as 𝐫𝐫′ = (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) = (𝑢𝑢, 0,0), so that d𝐫𝐫′ = (d𝑢𝑢, 0,0) 

� 𝐅𝐅(𝐫𝐫′) ⋅ d𝐫𝐫′
(𝑥𝑥,0,0)

(0,0,0)
= � 𝐅𝐅(𝑢𝑢, 0,0) ⋅ (d𝑢𝑢 𝐱𝐱�)

𝑥𝑥

0
= � 𝐹𝐹𝑥𝑥(𝑢𝑢, 0,0) d𝑢𝑢

𝑥𝑥

0
= � (𝑦𝑦2 − 2𝑥𝑥𝑦𝑦𝑧𝑧3) 𝑥𝑥=𝑢𝑢

𝑦𝑦=𝑧𝑧=0
 d𝑢𝑢

𝑥𝑥

0
= 0 

�𝐅𝐅 ⋅ d𝐫𝐫
 

𝐿𝐿
= � 𝐅𝐅 ⋅ �

d𝐫𝐫
d𝑢𝑢

 d𝑢𝑢�
 

𝐿𝐿
= � �𝐅𝐅(𝐫𝐫(𝑢𝑢)) ⋅ 𝛕𝛕(𝑢𝑢)� d𝑢𝑢

𝑏𝑏

𝑎𝑎
 

 

𝛕𝛕 =
d𝐫𝐫
d𝑢𝑢

= �
d𝑥𝑥/d𝑢𝑢
d𝑦𝑦/d𝑢𝑢
d𝑧𝑧/d𝑢𝑢

� 
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Second integral: parametrize the curve as 𝐫𝐫′ = (𝑥𝑥′,𝑦𝑦′, 𝑧𝑧′) = (𝑥𝑥,𝑢𝑢, 0), so that d𝐫𝐫′ = (0, d𝑢𝑢, 0) 

� 𝐅𝐅(𝐫𝐫′) ⋅ d𝐫𝐫′
(𝑥𝑥,𝑦𝑦,0)

(𝑥𝑥,0,0)
= � 𝐅𝐅(𝑥𝑥,𝑢𝑢, 0) ⋅ (d𝑢𝑢 𝐲𝐲�)

𝑦𝑦

0
= � (3 + 2𝑥𝑥𝑦𝑦 − 𝑥𝑥2𝑧𝑧3)𝑥𝑥=𝑥𝑥

𝑦𝑦=𝑢𝑢
𝑧𝑧=0

 d𝑢𝑢
𝑦𝑦

0
= � (3 + 2𝑥𝑥𝑢𝑢) d𝑢𝑢

𝑦𝑦

0

= 3𝑦𝑦 + 𝑥𝑥𝑦𝑦2 

Third integral: parametrize the curve as 𝐫𝐫′ = (𝑥𝑥′, 𝑦𝑦′, 𝑧𝑧′) = (𝑥𝑥,𝑦𝑦,𝑢𝑢), so that d𝐫𝐫′ = (0,0, d𝑢𝑢) 

� 𝐅𝐅(𝐫𝐫′) ⋅ d𝐫𝐫′
(𝑥𝑥,𝑦𝑦,𝑧𝑧)

(𝑥𝑥,𝑦𝑦,0)
= � 𝐅𝐅(𝑥𝑥,𝑦𝑦,𝑢𝑢) ⋅ (d𝑢𝑢 𝐳𝐳�)

𝑧𝑧

0
= � (6𝑧𝑧3 − 3𝑥𝑥2𝑦𝑦𝑧𝑧2)𝑥𝑥=𝑥𝑥

𝑦𝑦=𝑦𝑦
𝑧𝑧=𝑢𝑢

 d𝑢𝑢
𝑧𝑧

0
= � (6𝑢𝑢3 − 3𝑥𝑥2𝑦𝑦𝑢𝑢2) d𝑢𝑢

𝑧𝑧

0

=
3
2
𝑧𝑧4 − 𝑥𝑥2𝑦𝑦𝑧𝑧3 

Therefore: 

𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜙𝜙𝑂𝑂 − 0 − (3𝑦𝑦 + 𝑥𝑥𝑦𝑦2) − �
3
2
𝑧𝑧4 − 𝑥𝑥2𝑦𝑦𝑧𝑧3� 

𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜙𝜙𝑂𝑂 − 3𝑦𝑦 − 𝑥𝑥𝑦𝑦2 −
3
2
𝑧𝑧4 + 𝑥𝑥2𝑦𝑦𝑧𝑧3 

You can now check that this potential gives rise to the field by calculating its gradient. 

Note that I went down the robust but long path, individually parametrizing each curve, to avoid any 
confusion between the variable of integration and the variables being held constants on each path.  

Once we have gained confidence doing line integrals, this whole problem could be done in three 
lines: 

Fast method: 

𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜙𝜙𝑂𝑂 −� 𝐅𝐅 ⋅ d𝐫𝐫′
(𝑥𝑥,0,0)

(0,0,0)
−� 𝐅𝐅 ⋅ d𝐫𝐫′

(𝑥𝑥,𝑦𝑦,0)

(𝑥𝑥,0,0)
−� 𝐅𝐅 ⋅ d𝐫𝐫′

(𝑥𝑥,𝑦𝑦,𝑧𝑧)

(𝑥𝑥,𝑦𝑦,0)
 

= 𝜙𝜙𝑂𝑂 −� 𝐹𝐹𝑥𝑥  d𝑥𝑥
(𝑥𝑥,0,0)

(0,0,0)
−� 𝐹𝐹𝑦𝑦 d𝑦𝑦

(𝑥𝑥,𝑦𝑦,0)

(𝑥𝑥,0,0)
−� 𝐹𝐹𝑧𝑧 d𝑧𝑧

(𝑥𝑥,𝑦𝑦,𝑧𝑧)

(𝑥𝑥,𝑦𝑦,0)
 

                    = 𝜙𝜙𝑂𝑂 −� (𝑦𝑦2 − 2𝑥𝑥𝑦𝑦𝑧𝑧3)���������
𝑥𝑥=𝑥𝑥
𝑦𝑦=0
𝑧𝑧=0

d𝑥𝑥
𝑥𝑥

0
− � (3 + 2𝑥𝑥𝑦𝑦 − 𝑥𝑥2𝑧𝑧3)�����������

𝑥𝑥=𝑥𝑥 (const)
𝑦𝑦=𝑦𝑦
𝑧𝑧=0

d𝑦𝑦
𝑦𝑦

0
− � (6𝑧𝑧3 − 3𝑥𝑥2𝑦𝑦𝑧𝑧2)�����������

𝑥𝑥=𝑥𝑥 (const)
𝑦𝑦=𝑦𝑦 (const)

𝑧𝑧=𝑧𝑧

d𝑧𝑧
𝑧𝑧

0
  

= 𝜙𝜙𝑂𝑂 − � 0 d𝑥𝑥
𝑥𝑥

0�����
0

−� (3 + 2𝑥𝑥𝑦𝑦)d𝑦𝑦
𝑦𝑦

0�����������
3𝑦𝑦+𝑥𝑥𝑦𝑦2

− � (6𝑧𝑧3 − 3𝑥𝑥2𝑦𝑦𝑧𝑧2)d𝑧𝑧
𝑧𝑧

0���������������
3
2𝑧𝑧

4−𝑥𝑥2𝑦𝑦𝑧𝑧3

 

12) Use the previous result to find the line integral ∫ 𝐅𝐅 ⋅ d𝐫𝐫(1,2,1)
(0,0,0)  along any path from (𝑥𝑥,𝑦𝑦, 𝑧𝑧) =

(0,0,0) to (1,2,1), where 𝐅𝐅 is the vector field from the previous problem. 

Since the field derives from a potential 𝐅𝐅 = −𝛁𝛁𝜙𝜙, the line integral is given by: 

� 𝐅𝐅 ⋅ d𝐫𝐫

(1,2,1)

(0,0,0)

= 𝜙𝜙(0,0,0) − 𝜙𝜙(1,2,1) = [𝜙𝜙0] − �𝜙𝜙𝑂𝑂 − 3(2) − (1)(2)2 −
3
2

(1)4 + (1)2(2)(1)3�

= 15/2 
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13) A vector field is given by 𝐅𝐅(𝐫𝐫) = (6𝑥𝑥𝑦𝑦 + 2𝑧𝑧2, 3𝑥𝑥2 + 3𝑧𝑧, 4𝑥𝑥𝑧𝑧 + 3𝑦𝑦). Verify whether it derives 
from a potential and find the potential if it exists. 

Solution: To verify whether it derives from a potential, we need to check that it is curl-free: 

curl(𝐅𝐅) = �
𝐱𝐱� 𝐲𝐲� 𝐳𝐳�

𝜕𝜕/𝜕𝜕𝑥𝑥 𝜕𝜕/𝜕𝜕𝑦𝑦 𝜕𝜕/𝜕𝜕𝑧𝑧
𝐹𝐹𝑥𝑥 𝐹𝐹𝑦𝑦 𝐹𝐹𝑧𝑧

� = �
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑦𝑦

−
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑧𝑧

� 𝐱𝐱� + �
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑧𝑧

−
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝑥𝑥

� 𝐲𝐲� + �
𝜕𝜕𝐹𝐹𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝑦𝑦

� 𝐳𝐳� 

= (3 − 3)𝐱𝐱� + (4𝑧𝑧 − 4𝑧𝑧)𝐲𝐲� + (6𝑥𝑥 − 6𝑥𝑥)𝐳𝐳� = 𝟎𝟎 

To obtain the potential, again we use the line integral ∫ 𝐅𝐅(𝐫𝐫′) ⋅ d𝐫𝐫′𝐫𝐫
0 = 𝜙𝜙(𝟎𝟎) − 𝜙𝜙(𝐫𝐫) to find: 

(we use the fast method) 

𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 𝜙𝜙𝑂𝑂 − � 𝐅𝐅 ⋅ d𝐫𝐫′
(𝑥𝑥,0,0)

(0,0,0)
−� 𝐅𝐅 ⋅ d𝐫𝐫′

(𝑥𝑥,𝑦𝑦,0)

(𝑥𝑥,0,0)
−� 𝐅𝐅 ⋅ d𝐫𝐫′

(𝑥𝑥,𝑦𝑦,𝑧𝑧)

(𝑥𝑥,𝑦𝑦,0)
 

= 𝜙𝜙𝑂𝑂 − � 𝐹𝐹𝑥𝑥  d𝑥𝑥
(𝑥𝑥,0,0)

(0,0,0)
−� 𝐹𝐹𝑦𝑦 d𝑦𝑦

(𝑥𝑥,𝑦𝑦,0)

(𝑥𝑥,0,0)
−� 𝐹𝐹𝑧𝑧 d𝑧𝑧

(𝑥𝑥,𝑦𝑦,𝑧𝑧)

(𝑥𝑥,𝑦𝑦,0)
 

                    = 𝜙𝜙𝑂𝑂 − � (6𝑥𝑥𝑦𝑦 + 2𝑧𝑧2)���������
𝑥𝑥=𝑥𝑥
𝑦𝑦=0
𝑧𝑧=0

d𝑥𝑥
𝑥𝑥

0
− � (3𝑥𝑥2 + 3𝑧𝑧)�������

𝑥𝑥=𝑥𝑥 (const)
𝑦𝑦=𝑦𝑦
𝑧𝑧=0

d𝑦𝑦
𝑦𝑦

0
− � (4𝑥𝑥𝑧𝑧 + 3𝑦𝑦)�������

𝑥𝑥=𝑥𝑥 (const)
𝑦𝑦=𝑦𝑦 (const)

𝑧𝑧=𝑧𝑧

d𝑧𝑧
𝑧𝑧

0
  

= 𝜙𝜙𝑂𝑂 −� 0 d𝑥𝑥
𝑥𝑥

0�����
0

− � (3𝑥𝑥2)d𝑦𝑦
𝑦𝑦

0�������
3𝑥𝑥2𝑦𝑦

− � (4𝑥𝑥𝑧𝑧 + 3𝑦𝑦)d𝑧𝑧
𝑧𝑧

0�����������
2𝑥𝑥𝑧𝑧2+3𝑦𝑦𝑧𝑧

 

= 𝜙𝜙𝑂𝑂 − 3𝑥𝑥2𝑦𝑦 − 2𝑥𝑥𝑧𝑧2 − 3𝑦𝑦𝑧𝑧 

 

 

14) Show that the magnetic field created by a 𝑧𝑧-directed current 𝐈𝐈 = 𝐼𝐼0𝐳𝐳� crossing through the origin, 
which is given below, is solenoidal: 

𝐁𝐁(𝐫𝐫) =
𝜇𝜇0𝐼𝐼1
2𝜋𝜋𝜌𝜌

𝐞𝐞�𝜙𝜙 

Solution: To prove that a field is solenoidal, we need to check that ∇ ⋅ 𝐁𝐁 = 0 (i.e. it is divergence free) 

Two options:  

(1) Calculate it in cartesian basis. 

We first need to convert 𝐁𝐁(𝐫𝐫) into cartesian basis and coordinates. This is done via the change 𝜌𝜌 =
�𝑥𝑥2 + 𝑦𝑦2 and 𝐞𝐞�𝜙𝜙 = − sin𝜙𝜙 𝐱𝐱� + cos𝜙𝜙  𝐲𝐲� = −𝑦𝑦 𝐱𝐱�+𝑥𝑥 𝐲𝐲�

�𝑥𝑥2+𝑦𝑦2
. Note that sin𝜙𝜙 and cos𝜙𝜙 can be easily found by 

drawing the right-angled triangle of sides 𝑥𝑥 and 𝑦𝑦. 

𝐁𝐁(𝐫𝐫) =
𝜇𝜇0𝐼𝐼1

2𝜋𝜋�𝑥𝑥2 + 𝑦𝑦2
�
−𝑦𝑦 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�
�𝑥𝑥2 + 𝑦𝑦2

� =
𝜇𝜇0𝐼𝐼 (−𝑦𝑦 𝐱𝐱� + 𝑥𝑥 𝐲𝐲�)

2𝜋𝜋(𝑥𝑥2 + 𝑦𝑦2)  

For which we can now calculate the divergence with our usual method: 
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∇ ⋅ 𝐁𝐁 =
𝜕𝜕𝐵𝐵𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐵𝐵𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝐵𝐵𝑧𝑧
𝜕𝜕𝑧𝑧

=
𝜕𝜕
𝜕𝜕𝑥𝑥

�
−𝑦𝑦𝜇𝜇0𝐼𝐼 

2𝜋𝜋(𝑥𝑥2 + 𝑦𝑦2)� +
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝑥𝑥𝜇𝜇0𝐼𝐼 

2𝜋𝜋(𝑥𝑥2 + 𝑦𝑦2)� 

= (−2𝑥𝑥)
−𝑦𝑦𝜇𝜇0𝐼𝐼 

2𝜋𝜋(𝑥𝑥2 + 𝑦𝑦2)2 + (−2𝑦𝑦)
𝑥𝑥𝜇𝜇0𝐼𝐼 

2𝜋𝜋(𝑥𝑥2 + 𝑦𝑦2)2 = 0 

 

(2) Calculate it directly in cylindrical basis. This is much easier but is unfortunately out of the scope 
of this module. I only show it here for completeness. Divergence in cylindrical coordinates can be 
shown to be:  

∇ ⋅ 𝐁𝐁 =
1
𝜌𝜌
𝜕𝜕�𝜌𝜌𝐵𝐵𝜌𝜌�
𝜕𝜕𝜌𝜌

+
1
𝜌𝜌
𝜕𝜕𝐵𝐵𝜙𝜙
𝜕𝜕𝜙𝜙

+
𝜕𝜕𝐵𝐵
𝜕𝜕𝑧𝑧

 

(we usually look up this equation in a book, or online, for instance Wikipedia has a nice table for 
divergence and curl in cylindrical and spherical coordinates: 

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates) 

Since this magnetic field only has 𝐵𝐵𝜙𝜙 component, the divergence is ∇ ⋅ 𝐁𝐁 = 1
𝜌𝜌
𝜕𝜕𝐵𝐵𝜙𝜙
𝜕𝜕𝜙𝜙

= 1
𝜌𝜌

𝜕𝜕
𝜕𝜕𝜙𝜙
�𝜇𝜇0𝐼𝐼1
2𝜋𝜋𝜌𝜌

� = 0. 

  

 

https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
https://en.wikipedia.org/wiki/Del_in_cylindrical_and_spherical_coordinates
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6. ORDINARY DIFFERENTIAL EQUATIONS 

Nature seems to write its laws in the form of differential equations. Ordinary differential equations 
use ordinary derivatives (as opposed to partial derivatives) and therefore involve an unknown function 
𝑦𝑦(𝑥𝑥). Let’s start by reviewing what you learnt last semester: some concepts can be understood better 
thanks to our knowledge of linear algebra. 

 

A. REVIEW OF ODE CLASSIFICATION 

Order: The order of the ODE equals the order of the highest-order derivative appearing in it. 

The general solution of an 𝑛𝑛-th order ODE contains 𝑛𝑛 arbitrary parameters (constants). These 
must be determined by providing 𝑛𝑛 externally imposed (boundary) conditions. 

Degree: Highest power of the highest order term (after fractional powers are removed) 

 

B. REVIEW OF SOME METHODS TO SOLVE ODEs OF ORDER 1 

DIRECT INTEGRATION: 

d𝑦𝑦
d𝑥𝑥

= 𝑓𝑓(𝑥𝑥)  → d𝑦𝑦 = 𝑓𝑓(𝑥𝑥)d𝑥𝑥 → �d𝑦𝑦 = �𝑓𝑓(𝑥𝑥)d𝑥𝑥 → 𝑦𝑦 = �𝑓𝑓(𝑥𝑥)d𝑥𝑥 

SEPARATION OF VARIABLES: 

d𝑦𝑦
d𝑥𝑥

= 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦)  →
1

𝑔𝑔(𝑦𝑦) d𝑦𝑦 = 𝑓𝑓(𝑥𝑥)d𝑥𝑥 → �
1

𝑔𝑔(𝑦𝑦) d𝑦𝑦 = �𝑓𝑓(𝑥𝑥)d𝑥𝑥 

 

C. REVIEW OF LINEAR ODEs 

An ODE is linear if it can be written as: ∑𝑓𝑓𝑖𝑖(𝑥𝑥)𝑦𝑦(𝑖𝑖)(𝑥𝑥) = 𝑟𝑟(𝑥𝑥) 

where we used the notation 𝑦𝑦(𝑖𝑖) = d𝑖𝑖𝑦𝑦
d𝑥𝑥𝑖𝑖

.  

Linear ODEs fulfil that if 𝑦𝑦1 and 𝑦𝑦2 are solutions, then 𝜆𝜆𝑦𝑦1 + 𝜇𝜇𝑦𝑦2 is also a solution. 

Linear ODEs general solution is given by  𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝐶𝐶(𝑥𝑥) + 𝑦𝑦𝑃𝑃(𝑥𝑥), where: 

• 𝑦𝑦𝐶𝐶(𝑥𝑥) is the complementary solution (solution to the homogeneous system 
∑𝑓𝑓𝑖𝑖(𝑥𝑥)𝑦𝑦(𝑖𝑖)(𝑥𝑥) = 0 which will be a linear combination of 𝑛𝑛 terms each with arbitrary 
amplitude, corresponding to the free parameters or dimension of the null space). 

• 𝑦𝑦𝑃𝑃(𝑥𝑥) is the particular solution (any solution to the whole system ∑𝑓𝑓𝑖𝑖(𝑥𝑥)𝑦𝑦(𝑖𝑖)(𝑥𝑥) =
𝑟𝑟(𝑥𝑥) as long as it is linearly independent to the 𝑦𝑦𝐶𝐶(𝑥𝑥)) 

• This is completely analogous to the solution of 𝐀𝐀𝐀𝐀 = 𝐜𝐜 given by: 
 𝐀𝐀 = span{𝐀𝐀1,𝐀𝐀2, … , 𝐀𝐀𝑁𝑁}�������������

sol.  to 𝐀𝐀𝐀𝐀=𝟎𝟎
+ 𝐀𝐀𝑝𝑝 
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D. LINEAR ODEs WITH CONSTANT COEFFICIENTS 

 

 

 

  

�𝑎𝑎𝑖𝑖𝑦𝑦(𝑖𝑖)(𝑥𝑥) = 𝑟𝑟(𝑥𝑥) 

𝑎𝑎𝑁𝑁
d𝑁𝑁𝑦𝑦
d𝑥𝑥𝑁𝑁

+⋯+ 𝑎𝑎2
d2𝑦𝑦
d𝑥𝑥2

+ 𝑎𝑎1
d𝑦𝑦
d𝑥𝑥

+ 𝑎𝑎0𝑦𝑦 = 𝑟𝑟(𝑥𝑥) 

Easy procedure for solving this type of equation: 

• Obtain 𝑦𝑦𝐶𝐶(𝑥𝑥) by setting 𝑟𝑟(𝑥𝑥) = 0 (solution to the homogeneous equation) and using the 
ansatz 𝑦𝑦(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑚𝑚𝑥𝑥. This reduces the homogeneous differential equation into an 
algebraic equation (characteristic polynomial 𝑝𝑝(𝑚𝑚) = 0) that can be solved for 𝑚𝑚. Each 
root of 𝑚𝑚 provides an independent solution with an arbitrary scaling coefficient 𝑐𝑐𝑖𝑖. 
 

𝑦𝑦𝐶𝐶(𝑥𝑥) = 𝑐𝑐1𝑒𝑒𝑚𝑚1𝑥𝑥 + ⋯+ 𝑐𝑐𝑁𝑁𝑒𝑒𝑚𝑚𝑁𝑁𝑥𝑥 
 

o If any of the roots is repeated 𝑘𝑘 times, then use 𝐴𝐴𝑒𝑒𝑚𝑚𝑥𝑥,𝐵𝐵𝑥𝑥𝑒𝑒𝑚𝑚𝑥𝑥, … ,𝐶𝐶𝑥𝑥𝑘𝑘−1𝑒𝑒𝑚𝑚𝑥𝑥 as 𝑘𝑘 
independent solutions (i.e. multiply by 𝑥𝑥 as many times as needed to get 𝑘𝑘 terms). 
 

• Obtain 𝑦𝑦𝑃𝑃(𝑥𝑥) by looking at the form of 𝑟𝑟(𝑥𝑥) and using a similar form as ansatz for 𝑦𝑦(𝑥𝑥) 
(see table below - method of undetermined coefficients) with arbitrary coefficients to be 
determined by substitution on the ODE: 
 
𝑟𝑟(𝑥𝑥) = Polynomial degree 𝑛𝑛 → 𝑦𝑦𝑃𝑃(𝑥𝑥) = Polynomial degree 𝑛𝑛 with coefs 𝐴𝐴𝑖𝑖 
𝑟𝑟(𝑥𝑥) = cos(𝑥𝑥)   or   sin(𝑥𝑥) → 𝑦𝑦𝑃𝑃(𝑥𝑥) = 𝐴𝐴 cos(𝑥𝑥) + 𝐵𝐵 sin(𝑥𝑥) 

𝑟𝑟(𝑥𝑥) = 𝐶𝐶𝑒𝑒𝑘𝑘𝑥𝑥 → 𝑦𝑦𝑃𝑃(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑘𝑘𝑥𝑥 
𝑟𝑟(𝑥𝑥) = Product of above → 𝑦𝑦𝑃𝑃(𝑥𝑥) = Product of above 

 
o The particular solution 𝑦𝑦𝑃𝑃(𝑥𝑥) must be linearly independent to the complementary 

solution 𝑦𝑦𝐶𝐶(𝑥𝑥). If the suggested particular solution has terms which already exist 
in the complementary solution, then multiply the entire particular solution by the 
smallest integer power of 𝑥𝑥 which ensures that none of the resulting terms 
appears in 𝑦𝑦𝐶𝐶(𝑥𝑥). 
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1) Solve the ODE:  𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
− 2 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
+ 𝑦𝑦 = 𝑒𝑒𝑥𝑥 

Solution: It is a linear ODE with constant coefficients, so we need to find 𝑦𝑦𝐶𝐶(𝑥𝑥) and 𝑦𝑦𝑃𝑃(𝑥𝑥). 

Solving the homogeneous equation to find the complementary solution: 

𝑦𝑦𝐶𝐶(𝑥𝑥) is the solution to the homogeneous equation 𝑑𝑑
2𝑦𝑦

𝑑𝑑𝑥𝑥2
− 2 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
+ 𝑦𝑦 = 0. Solved with the ansatz 

𝑦𝑦(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑚𝑚𝑥𝑥. Substituting into the homogeneous equation we arrive at the characteristic polynomial 
𝑚𝑚2 − 2𝑚𝑚 + 1 = 0, which can be factorised as (𝑚𝑚 − 1)(𝑚𝑚− 1) = 0. Therefore 𝑚𝑚 = 1 is a repeated 
root! So, the complementary solution is: 𝑦𝑦𝐶𝐶(𝑥𝑥) = 𝐴𝐴1𝑒𝑒𝑥𝑥 + 𝐴𝐴2𝑥𝑥𝑒𝑒𝑥𝑥. 

Finding the particular solution: 

𝑦𝑦𝑃𝑃(𝑥𝑥) is the particular solution, found by looking at the form of 𝑟𝑟(𝑥𝑥) = 𝑒𝑒𝑥𝑥, which seems to suggest 
us to try the ansatz 𝑦𝑦(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑥𝑥.  

However, this solution is already “taken” by the complementary solution! We have to try 𝑦𝑦(𝑥𝑥) =
𝐴𝐴𝑥𝑥2𝑒𝑒𝑘𝑘𝑥𝑥 because 𝐴𝐴𝑒𝑒𝑘𝑘𝑥𝑥 and 𝐴𝐴𝑥𝑥𝑒𝑒𝑘𝑘𝑥𝑥 are already “taken”. (What do I mean by “taken”? Note that any 
combination of those two terms, 𝐴𝐴𝑒𝑒𝑘𝑘𝑥𝑥 + 𝐵𝐵𝑥𝑥𝑒𝑒𝑘𝑘𝑥𝑥 if substituted on the left-hand side of the differential 
equation, would give zero, as that is the definition for how we found them in the first place. So, they 
cannot be a particular solution). 

Substituting 𝑦𝑦(𝑥𝑥) = 𝐴𝐴𝑥𝑥2𝑒𝑒𝑘𝑘𝑥𝑥 into the complete ODE (requires applying product rule several times) we 
find:  

𝐴𝐴 �
𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥2𝑒𝑒𝑥𝑥 + 2𝑥𝑥𝑒𝑒𝑥𝑥)− 2(𝑥𝑥2𝑒𝑒𝑥𝑥 + 2𝑥𝑥𝑒𝑒𝑥𝑥) + 𝑥𝑥2𝑒𝑒𝑥𝑥� = 𝑒𝑒𝑥𝑥 

𝐴𝐴�(2𝑥𝑥𝑒𝑒𝑥𝑥 + 𝑥𝑥2𝑒𝑒𝑥𝑥) + (2𝑒𝑒𝑥𝑥 + 2𝑥𝑥𝑒𝑒𝑥𝑥) − 2(𝑥𝑥2𝑒𝑒𝑥𝑥 + 2𝑥𝑥𝑒𝑒𝑥𝑥) + 𝑥𝑥2𝑒𝑒𝑥𝑥� = 𝑒𝑒𝑥𝑥 

𝐴𝐴(2𝑥𝑥 + 𝑥𝑥2 + 2 + 2𝑥𝑥 − 2𝑥𝑥2 − 4𝑥𝑥 + 𝑥𝑥2)𝑒𝑒𝑥𝑥 = 𝑒𝑒𝑥𝑥 

2𝐴𝐴𝑒𝑒𝑥𝑥 = 𝑒𝑒𝑥𝑥 → 𝐴𝐴 = (1/2) 

General solution: 

𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝐶𝐶(𝑥𝑥) + 𝑦𝑦𝑃𝑃(𝑥𝑥) 

𝑦𝑦(𝑥𝑥) =  𝐴𝐴1𝑒𝑒𝑥𝑥 + 𝐴𝐴2𝑥𝑥𝑒𝑒𝑥𝑥 +
1
2
𝑥𝑥2𝑒𝑒𝑥𝑥 
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E. SOME METHODS FOR SOLVING FIRST ORDER ODEs 

First order first degree differential equations can be always re-written as: 

𝐴𝐴(𝑥𝑥,𝑦𝑦)d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦 = 0  

I. EXACT DIFFERENTAL EQUATIONS: 

In some cases, we might be lucky that the left-hand side of the ODE happens to be the total 
differential of a function 𝐹𝐹(𝑥𝑥,𝑦𝑦) [remember the definition of d𝐹𝐹 from partial derivatives]. 

 

When this happens, the ODE is called an exact differential equation, and 𝐴𝐴(𝑥𝑥,𝑦𝑦) d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦 is 
called an exact differential. The ODE can be written as d𝐹𝐹 = 0. The solution is trivial, by integrating 
both sides: 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = constant 

which can be considered as a solution to our equation (as it contains no derivatives) even though it is 
not written in the form 𝑦𝑦 = 𝑦𝑦(𝑥𝑥).  

To check if an ODE is exact, we need to verify whether a function 𝐹𝐹(𝑥𝑥,𝑦𝑦) exists such that: 

�𝐴𝐴
(𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝐹𝐹/𝜕𝜕𝑥𝑥

𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝐹𝐹/𝜕𝜕𝑦𝑦        (1) 

The quickest way to check this is to test the equality of the cross partial derivatives 𝜕𝜕
𝜕𝜕𝑥𝑥
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
� = 𝜕𝜕

𝜕𝜕𝑦𝑦
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�, 

which in accordance to (1) implies the condition: 

 
(2) 

 

If Eq. (2) is fulfilled, then we know that we can find a function 𝐹𝐹(𝑥𝑥,𝑦𝑦) such that d𝐹𝐹 = 𝐴𝐴(𝑥𝑥,𝑦𝑦) d𝑥𝑥 +
𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦. There are two methods to find it: 

A) We can integrate either of the two equations in (1). For example, integrating the first one: 

𝐴𝐴(𝑥𝑥,𝑦𝑦) =
𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥

  →     𝐹𝐹(𝑥𝑥,𝑦𝑦) = �𝐴𝐴(𝑥𝑥,𝑦𝑦)  d𝑥𝑥 + 𝑐𝑐(𝑦𝑦) 

where the “arbitrary constant” may still (and most probably will) be a function of the other variable 
𝑦𝑦. The unknown function 𝑐𝑐(𝑦𝑦) is obtained from the other condition in (1), that is, 𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝐹𝐹/𝜕𝜕𝑦𝑦. 

B) Use the technique we used to obtain the potential of a conservative field:  

� 𝐴𝐴(𝑥𝑥, 𝑦𝑦) d𝑥𝑥 + 𝐵𝐵(𝑥𝑥, 𝑦𝑦)d𝑦𝑦
(𝑥𝑥,𝑦𝑦)

(0,0)
 = � d𝐹𝐹

(𝑥𝑥,𝑦𝑦)

(0,0)
= 𝐹𝐹(𝑥𝑥,𝑦𝑦) − 𝐹𝐹(0,0) 

choosing a simple path of integration (0,0) → (𝑥𝑥, 0) → (𝑥𝑥,𝑦𝑦). 

ODE is exact   ⟺   
𝜕𝜕𝐵𝐵
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝐴𝐴
𝜕𝜕𝑦𝑦

 

 

𝐴𝐴(𝑥𝑥,𝑦𝑦)�����
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)�����
 𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦

d𝑦𝑦

���������������
d𝜕𝜕 

= 0  
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2) Example: Solve the equation 

d𝑦𝑦
d𝑥𝑥

= −
2𝑥𝑥𝑦𝑦

𝑥𝑥2 + 𝑦𝑦2
 

Solution: This first order ODE is not easily separable. We can try to see if it is an exact differential ODE. 
We first rewrite it as: 

2𝑥𝑥𝑦𝑦�
𝐴𝐴(𝑥𝑥,𝑦𝑦)

 d𝑥𝑥 + (𝑥𝑥2 + 𝑦𝑦2)�������
𝐵𝐵(𝑥𝑥,𝑦𝑦)

 d𝑦𝑦 = 0 

Now we check for the condition that this equation is exact: 

𝜕𝜕𝐵𝐵
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝐴𝐴
𝜕𝜕𝑦𝑦

 

2𝑥𝑥 = 2𝑥𝑥 

Indeed, it is fulfilled, so the ODE is exact! Excellent news; there exists a function 𝐹𝐹(𝑥𝑥,𝑦𝑦) such that: 

�𝐴𝐴
(𝑥𝑥, 𝑦𝑦) = 𝜕𝜕𝐹𝐹/𝜕𝜕𝑥𝑥

𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝜕𝜕𝐹𝐹/𝜕𝜕𝑦𝑦  ⟹   𝐴𝐴(𝑥𝑥,𝑦𝑦)d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦 = d𝐹𝐹 

 

 

Let’s find it. Method 1: We may integrate ∫𝐴𝐴 d𝑥𝑥 or ∫𝐵𝐵 d𝑦𝑦. Let’s try the first: 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = �𝐴𝐴 d𝑥𝑥 = � 2𝑥𝑥𝑦𝑦 d𝑥𝑥 = 𝑥𝑥2𝑦𝑦 + 𝑐𝑐1(𝑦𝑦) 

The “arbitrary constant” can be found by the second condition: 

𝐵𝐵(𝑥𝑥,𝑦𝑦) =
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦

 

𝑥𝑥2 + 𝑦𝑦2 = 𝑥𝑥2 +
𝜕𝜕𝑐𝑐1(𝑦𝑦)
𝜕𝜕𝑦𝑦

 

From which we find 𝑐𝑐1(𝑦𝑦) = 1
3
𝑦𝑦3 + 𝑐𝑐2. Therefore, 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑥𝑥2𝑦𝑦 + 1

3
𝑦𝑦3 + 𝑐𝑐2. 

Method 2: We can think of a line integral between (0,0) and (𝑥𝑥,𝑦𝑦): 

� 𝐴𝐴(𝑥𝑥,𝑦𝑦) d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦
(𝑥𝑥,𝑦𝑦)

(0,0)
 = � d𝐹𝐹

(𝑥𝑥,𝑦𝑦)

(0,0)
= 𝐹𝐹(𝑥𝑥,𝑦𝑦) − 𝐹𝐹(0,0)���

𝑐𝑐2

 

Hence: 𝐹𝐹(𝑥𝑥,𝑦𝑦) = �∫ 𝐴𝐴(𝑥𝑥,𝑦𝑦) d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦(𝑥𝑥,𝑦𝑦)
(0,0) � + 𝑐𝑐2 

So, we choose a simple path (0,0) → (𝑥𝑥, 0) → (𝑥𝑥,𝑦𝑦).  

In the first leg of the path, d𝑦𝑦 = 0 and 𝑦𝑦 = 0. In the second leg, d𝑥𝑥 = 0 and 𝑥𝑥 is a constant. 

� 𝐴𝐴(𝑥𝑥,𝑦𝑦) d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦
(𝑥𝑥,𝑦𝑦)

(0,0)
= � 𝐴𝐴(𝑥𝑥, 0)d𝑥𝑥

𝑥𝑥

0
+ � 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦

𝑦𝑦

0
= � 2𝑥𝑥𝑦𝑦�

𝑦𝑦=0
 d𝑥𝑥

𝑥𝑥

0
+ � (𝑥𝑥2 + 𝑦𝑦2)�������

𝑥𝑥=const
𝑦𝑦=𝑦𝑦

 d𝑦𝑦
𝑦𝑦

0

= �𝑥𝑥2𝑦𝑦 +
1
3
𝑦𝑦3�

0

𝑦𝑦
= 𝑥𝑥2𝑦𝑦 +

1
3
𝑦𝑦3. 
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So, the exact ODE can be written as 

2𝑥𝑥𝑦𝑦�
𝜕𝜕𝜕𝜕/𝜕𝜕𝑥𝑥

 d𝑥𝑥 + (𝑥𝑥2 + 𝑦𝑦2)�������
𝜕𝜕𝜕𝜕/𝜕𝜕𝑦𝑦

 d𝑦𝑦 = 0 

d𝐹𝐹(𝑥𝑥,𝑦𝑦) = 0 

Integrating both sides: 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑐𝑐0 

𝑥𝑥2𝑦𝑦 +
1
3
𝑦𝑦3 = 𝐴𝐴 

where 𝐴𝐴 = 𝑐𝑐0 − 𝑐𝑐2 is an arbitrary constant determined by external (boundary) conditions. 

As usual, remember that 𝑦𝑦 = 𝑦𝑦(𝑥𝑥): 

𝑥𝑥2𝑦𝑦(𝑥𝑥) +
1
3
𝑦𝑦(𝑥𝑥)3 = 𝐴𝐴 

 

Notice that we obtained a valid condition for the function 𝑦𝑦(𝑥𝑥) but we do not have an explicit 
expression for that function. We can check our answer by taking the derivative with respect to 𝑥𝑥 at 
both sides. Remember that 𝑦𝑦 = 𝑦𝑦(𝑥𝑥) and so we must use the product rule and chain rule. 

d
d𝑥𝑥

�𝑥𝑥2𝑦𝑦(𝑥𝑥) +
1
3
𝑦𝑦(𝑥𝑥)3� = 0 

�2𝑥𝑥𝑦𝑦 + 𝑥𝑥2
d𝑦𝑦
d𝑥𝑥
� + 𝑦𝑦2

d𝑦𝑦
d𝑥𝑥

= 0 

2𝑥𝑥𝑦𝑦 d𝑥𝑥 + (𝑥𝑥2 + 𝑦𝑦2)d𝑦𝑦 = 0 

Which gave us back the original ODE. 
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Alternative way of understanding exact ODEs: 

When the left-hand-side is exact, divide the ODE by d𝑥𝑥 to put it in the form containing d𝑦𝑦/d𝑥𝑥: 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥

d𝑥𝑥 +
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦

d𝑦𝑦 = 0 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝐹𝐹
𝜕𝜕𝑦𝑦

d𝑦𝑦
d𝑥𝑥

= 0 

In that form, the left-hand side is the derivative with respect to 𝑥𝑥 of some function 𝐹𝐹(𝑥𝑥,𝑦𝑦) [just 
recognising the chain rule for the total derivative d𝐹𝐹/d𝑥𝑥, remembering that 𝑦𝑦 = 𝑦𝑦(𝑥𝑥) and so we need 
to use the chain rule on 𝑦𝑦]. So we can write: 

d
d𝑥𝑥

(𝐹𝐹) = 0 

 

Sometimes this is easy to recognise by remembering common derivatives of functions 𝐹𝐹(𝑥𝑥,𝑦𝑦). e.g. we 
know that (𝑥𝑥2 + 𝑦𝑦2)′ = 2𝑥𝑥 + 2𝑦𝑦𝑦𝑦′, therefore if we see 2𝑥𝑥 + 2𝑦𝑦𝑦𝑦′ on the left-hand side of an ODE, 
we know it is exact and know how to solve it: 

• Examples: 

2𝑥𝑥 + 2𝑦𝑦
d𝑦𝑦
d𝑥𝑥

= 0   →    
d

d𝑥𝑥
(𝑥𝑥2 + 𝑦𝑦2) = 0   →    𝑥𝑥2 + 𝑦𝑦2 = 𝐶𝐶 

𝑦𝑦 + 𝑥𝑥
d𝑦𝑦
d𝑥𝑥

= 0   →    
d

d𝑥𝑥
(𝑥𝑥𝑦𝑦) = 0     →       𝑦𝑦 = 𝐶𝐶/𝑥𝑥 

1
𝑥𝑥2
�𝑦𝑦 − 𝑥𝑥

d𝑦𝑦
d𝑥𝑥
� = 0   →    

d
d𝑥𝑥

�
𝑦𝑦
𝑥𝑥
� = 0   →     𝑦𝑦 = 𝐶𝐶𝑥𝑥 

𝑒𝑒
1
2𝑥𝑥

2 d𝑦𝑦
d𝑥𝑥

+ 𝑥𝑥𝑒𝑒
1
2𝑥𝑥

2
𝑦𝑦 = 0  →   

d
d𝑥𝑥

�𝑒𝑒
1
2𝑥𝑥

2
𝑦𝑦� = 0  →    𝑒𝑒

1
2𝑥𝑥

2
𝑦𝑦 = 𝐶𝐶 

In all these cases 𝐴𝐴 + 𝐵𝐵 d𝑦𝑦
d𝑥𝑥

, the previous test 𝜕𝜕𝐵𝐵
𝜕𝜕𝑥𝑥

= 𝜕𝜕𝐴𝐴
𝜕𝜕𝑦𝑦

 is still a valid check for the exactness of the ODE. 

 

EXACT DIFFERENTIAL EQUALLING A FUNCTION OF 𝑥𝑥 INSTEAD OF ZERO 

An ODE can be written as an exact differential equalling a function of 𝑥𝑥 instead of zero! In that case, 
we can still integrate both sides: 

• Examples (same as above, but with non-zero right-hand side): 

2𝑥𝑥 + 2𝑦𝑦
d𝑦𝑦
d𝑥𝑥

= sin𝑥𝑥    →    
d

d𝑥𝑥
(𝑥𝑥2 + 𝑦𝑦2) = sin𝑥𝑥    →    𝑥𝑥2 + 𝑦𝑦2 = � sin𝑥𝑥  d𝑥𝑥

�������
cos𝑥𝑥

+ 𝐶𝐶 

𝑦𝑦 + 𝑥𝑥
d𝑦𝑦
d𝑥𝑥

= 𝑒𝑒2𝑥𝑥    →    
d

d𝑥𝑥
(𝑥𝑥𝑦𝑦) = 𝑒𝑒2𝑥𝑥      →       𝑥𝑥𝑦𝑦 =

𝑒𝑒2𝑥𝑥

2
+ 𝐶𝐶  →   𝑦𝑦 =

𝑒𝑒2𝑥𝑥

2𝑥𝑥
+
𝐶𝐶
𝑥𝑥

 

  

ODE is exact if it can be written as   
d

d𝑥𝑥
(𝐹𝐹) = 0 
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II. INTEGRATING FACTORS 

In some cases, an ODE is not exact as it does not fulfil the condition: 

ODE is not exact   ⟺   
𝜕𝜕𝐵𝐵
𝜕𝜕𝑥𝑥

≠
𝜕𝜕𝐴𝐴
𝜕𝜕𝑦𝑦

 

𝐴𝐴(𝑥𝑥,𝑦𝑦)�����
≠𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥

d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)�����
≠𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦

d𝑦𝑦 = 0 

However,  

 

And we can now solve this exact ODE. 

 

Unfortunately, finding the correct integrating factor requires in general inspiration or guesswork. 

You can test broad cases of 𝐼𝐼(𝑥𝑥,𝑦𝑦) using unknown parameters, and then use the condition 𝜕𝜕
𝜕𝜕𝑥𝑥

(𝐼𝐼𝐵𝐵) =
𝜕𝜕
𝜕𝜕𝑦𝑦

(𝐼𝐼𝐴𝐴) to find which values of the parameters fulfil the condition. 

 

  

Sometimes we can multiply the ODE by a function 𝐼𝐼(𝑥𝑥, 𝑦𝑦) called an integrating factor, 
such that the resulting ODE is exact: 

𝐼𝐼(𝑥𝑥,𝑦𝑦)𝐴𝐴(𝑥𝑥,𝑦𝑦)���������
=𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥

d𝑥𝑥 + 𝐼𝐼(𝑥𝑥,𝑦𝑦)𝐵𝐵(𝑥𝑥,𝑦𝑦)���������
=𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦

d𝑦𝑦 = 0 

New ODE is exact   ⟺   
𝜕𝜕
𝜕𝜕𝑥𝑥

(𝐼𝐼𝐵𝐵) =
𝜕𝜕
𝜕𝜕𝑦𝑦

(𝐼𝐼𝐴𝐴) 
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3) Solve the equation 

𝑦𝑦 − 𝑥𝑥
d𝑦𝑦
d𝑥𝑥

= 0 

Solution: Rewrite the equation as: 

𝑦𝑦 d𝑥𝑥 + (−𝑥𝑥) d𝑦𝑦 = 0 

This is not exact as 𝜕𝜕(𝑦𝑦)
𝜕𝜕𝑦𝑦

≠ 𝜕𝜕(−𝑥𝑥)
𝜕𝜕𝑥𝑥

. 

However, if we multiply times the integration factor 𝐼𝐼(𝑥𝑥,𝑦𝑦) = 1
𝑥𝑥2

 in both sides, then the equation 
becomes: 

𝑦𝑦
𝑥𝑥2

 d𝑥𝑥 + �−
1
𝑥𝑥
�d𝑦𝑦 = 0 

This equation is now exact: 𝜕𝜕
𝜕𝜕𝑦𝑦
� 𝑦𝑦
𝑥𝑥2
� = 𝜕𝜕

𝜕𝜕𝑥𝑥
�− 1

𝑥𝑥
� 

So, we can find a function 𝐹𝐹(𝑥𝑥,𝑦𝑦) such that 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 𝑦𝑦
𝑥𝑥2

 and 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= − 1
𝑥𝑥

. 

To find 𝐹𝐹(𝑥𝑥,𝑦𝑦) we can follow one of the two methods discussed earlier, or guess it: 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = −
𝑦𝑦
𝑥𝑥

 

Therefore, the solution to the ODE is: 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = −
𝑦𝑦
𝑥𝑥

= 𝐴𝐴 

𝑦𝑦 = 𝐶𝐶𝑥𝑥 

But how did we know to use the factor 𝐼𝐼(𝑥𝑥,𝑦𝑦) = 1
𝑥𝑥2

 in the first place? 

One could argue that, seeing 𝑦𝑦 − 𝑥𝑥𝑦𝑦′ = 0, you identify something that reminds you to the quotient 

rule �𝑦𝑦
𝑥𝑥
�
′

= 𝑦𝑦−𝑥𝑥𝑦𝑦′

𝑥𝑥2
 but it is missing the 1

𝑥𝑥2
, so you add it as an integrating factor! which automatically 

turns the ODE into �𝑦𝑦
𝑥𝑥
�
′

= 0, an exact equation, whose solution is 𝑦𝑦
𝑥𝑥

= 𝐶𝐶. 

  

Alternatively, we could have guessed a much more general integrating factor 𝐼𝐼(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝛼𝛼𝑦𝑦𝛽𝛽 and 
then looked for values of 𝛼𝛼 and 𝛽𝛽 which fulfil the exact ODE condition: 

𝜕𝜕
𝜕𝜕𝑦𝑦

(𝐼𝐼𝐴𝐴) =
𝜕𝜕
𝜕𝜕𝑥𝑥

(𝐼𝐼𝐵𝐵) 

𝜕𝜕
𝜕𝜕𝑦𝑦 �

𝑥𝑥𝛼𝛼𝑦𝑦𝛽𝛽𝑦𝑦� =
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝑥𝑥𝛼𝛼𝑦𝑦𝛽𝛽(−𝑥𝑥)� 

(𝛽𝛽 + 1)�𝑥𝑥𝛼𝛼𝑦𝑦𝛽𝛽� = −(𝛼𝛼 + 1)�𝑥𝑥𝛼𝛼𝑦𝑦𝛽𝛽� 

A possible solution is 𝛽𝛽 = 0 and 𝛼𝛼 = −2, which means 𝐼𝐼(𝑥𝑥,𝑦𝑦) = 1
𝑥𝑥2

, precisely the one we used. 
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III. FIRST ORDER LINEAR ODEs – INTEGRATING FACTOR CAN BE KNOWN FOLLOWING A RECIPE 

When a first order ODE is linear it can be written as: 

d𝑦𝑦
d𝑥𝑥

+ 𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝑄𝑄(𝑥𝑥) 

Then, it can be shown that the integrating factor 𝐼𝐼(𝑥𝑥) = exp{∫𝑃𝑃(𝑥𝑥)d𝑥𝑥} always converts the left-
hand side of the equation into an exact differential! 

Proof: Multiplying the ODE by the integrating factor: 

𝐼𝐼(𝑥𝑥)
d𝑦𝑦
d𝑥𝑥

+ 𝐼𝐼(𝑥𝑥)𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝐼𝐼(𝑥𝑥)𝑄𝑄(𝑥𝑥)     (1) 

If the integrating factor makes the equation exact, then we know it can be written as: 

d
d𝑥𝑥

[𝐹𝐹(𝑥𝑥)] = 𝐼𝐼(𝑥𝑥)𝑄𝑄(𝑥𝑥) 

But, looking at (1), the first term on the left-hand side seems to be the first term in the product rule 

of d
d𝑥𝑥

(𝐼𝐼(𝑥𝑥)𝑦𝑦(𝑥𝑥)). Indeed, if we assume that 𝐹𝐹(𝑥𝑥) = 𝐼𝐼(𝑥𝑥)𝑦𝑦(𝑥𝑥) then we get: 

𝐼𝐼
d𝑦𝑦
d𝑥𝑥

+
d𝐼𝐼
d𝑥𝑥

𝑦𝑦 = 𝐼𝐼(𝑥𝑥)𝑄𝑄(𝑥𝑥) 

Comparing this with Eq. (1) we see that we can have exactly this form if  d𝐼𝐼(𝑥𝑥)
d𝑥𝑥

= 𝑃𝑃(𝑥𝑥)𝐼𝐼(𝑥𝑥) which is 
fulfilled by an exponential integrating factor 𝐼𝐼(𝑥𝑥) = exp{∫𝑃𝑃(𝑥𝑥)d𝑥𝑥} 

 

 

 

  

d𝑦𝑦
d𝑥𝑥

+ 𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝑄𝑄(𝑥𝑥)

1st order linear ODE
⟺  ODE can be made exact with

a known integrating factor 𝐼𝐼(𝑥𝑥) = exp ��𝑃𝑃(𝑥𝑥)d𝑥𝑥�  
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4) Solve the linear ODE 

d𝑦𝑦
d𝑥𝑥

+ 2𝑥𝑥𝑦𝑦 = 4𝑥𝑥 

Solution: Since it is linear first order ODE, d𝑦𝑦
d𝑥𝑥

+ 𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝑄𝑄(𝑥𝑥), we know that the integrating factor 
𝐼𝐼(𝑥𝑥) = exp{∫𝑃𝑃(𝑥𝑥)d𝑥𝑥} will always make the left-hand side exact.  

𝐼𝐼(𝑥𝑥) = exp ��2𝑥𝑥 d𝑥𝑥� = 𝑒𝑒𝑥𝑥2 

Indeed, multiplying both sides by the integrating factor: 

𝑒𝑒𝑥𝑥2
d𝑦𝑦
d𝑥𝑥

+ 2𝑥𝑥𝑒𝑒𝑥𝑥2𝑦𝑦 = 4𝑥𝑥𝑒𝑒𝑥𝑥2 

We know that this equation must now be exact, so the left-hand side must be the 𝑥𝑥 derivative of a 
function 𝐹𝐹(𝑥𝑥,𝑦𝑦) that we need to find. We can see that the left-hand side is nothing else than the 
product rule, so we can write: 

d
d𝑥𝑥 �

𝑦𝑦𝑒𝑒𝑥𝑥2� = 4𝑥𝑥𝑒𝑒𝑥𝑥2 

Which can now be solved by integration: 

𝑦𝑦𝑒𝑒𝑥𝑥2 = �4𝑥𝑥𝑒𝑒𝑥𝑥2  d𝑥𝑥 

𝑦𝑦𝑒𝑒𝑥𝑥2 = 2𝑒𝑒𝑥𝑥2 + 𝐶𝐶 

𝑦𝑦 = 2 + 𝐶𝐶𝑒𝑒−𝑥𝑥2 

Notice that, since the ODE was a linear equation, the solution is of the expected form. The term with 

arbitrary scaling 𝑦𝑦𝐻𝐻(𝑥𝑥) = 𝐶𝐶𝑒𝑒−𝑥𝑥2 is the solution to the homogeneous equation d𝑦𝑦
d𝑥𝑥

+ 2𝑥𝑥𝑦𝑦 = 0, while 
the term 𝑦𝑦𝑃𝑃(𝑥𝑥) = 2 is a particular solution. 
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IV. HOMOGENEOUS DIFFERENTIAL EQUATIONS 

As we know, some first order ODEs are separable, so all that depends on 𝑥𝑥 can be put on one side, 
and all that depends on 𝑦𝑦 on the other. They can be solved by integrating both sides. 

𝑎𝑎(𝑥𝑥)d𝑥𝑥 = 𝑏𝑏(𝑦𝑦)d𝑦𝑦 

Some ODEs are not separable initially but can be transformed into being separable by a change of 
variables. One example of this is that of “homogeneous differential equations”. These are ODEs that 

can be written as d𝑦𝑦
d𝑥𝑥

= 𝐹𝐹 �𝑦𝑦
𝑥𝑥
�. 

 

Proof: Doing this change of variables, you can see that: 𝑦𝑦 = 𝑧𝑧 𝑥𝑥 →  d𝑦𝑦
d𝑥𝑥

= 𝑧𝑧 + 𝑥𝑥 d𝑧𝑧
d𝑥𝑥

 . Therefore: 

d𝑦𝑦
d𝑥𝑥

= 𝐹𝐹 �
𝑦𝑦
𝑥𝑥
� 

d
d𝑥𝑥

(𝑧𝑧𝑥𝑥) = 𝐹𝐹(𝑧𝑧) 

𝑧𝑧 + 𝑥𝑥
d𝑧𝑧
d𝑥𝑥

= 𝐹𝐹(𝑧𝑧) 

which is separable: 

d𝑧𝑧
𝐹𝐹(𝑧𝑧) − 𝑧𝑧

=
d𝑥𝑥
𝑥𝑥

 

and can be solved by direct integration (in principle, if the integral can be done): 

�
d𝑧𝑧

𝐹𝐹(𝑧𝑧) − 𝑧𝑧
= �

d𝑥𝑥
𝑥𝑥

 

 

 

  

d𝑦𝑦
d𝑥𝑥

= 𝐹𝐹 �
𝑦𝑦
𝑥𝑥
�

Homogeneous ODE
⟺  ODE can be solved

with a change of variables
𝑧𝑧(𝑥𝑥) = 𝑦𝑦/𝑥𝑥
𝑦𝑦 = 𝑧𝑧𝑥𝑥   
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5) Solve 

d𝑦𝑦
d𝑥𝑥

=
𝑦𝑦
𝑥𝑥

+ tan �
𝑦𝑦
𝑥𝑥
� 

Solution: This is a homogeneous equation. We can solve it by the change of variables𝑦𝑦 = 𝑧𝑧(𝑥𝑥) 𝑥𝑥. 

𝑦𝑦 = 𝑧𝑧𝑥𝑥 →  
d𝑦𝑦
d𝑥𝑥

= 𝑧𝑧 + 𝑥𝑥
d𝑧𝑧
d𝑥𝑥

 

Therefore: 

d𝑦𝑦
d𝑥𝑥

=
𝑦𝑦
𝑥𝑥

+ tan �
𝑦𝑦
𝑥𝑥
�  →    𝑧𝑧 + 𝑥𝑥

d𝑧𝑧
d𝑥𝑥

= 𝑧𝑧 + tan 𝑧𝑧 

Which is now a separable ODE: 

d𝑧𝑧
tan 𝑧𝑧

=
d𝑥𝑥
𝑥𝑥

  

And can be solved by integration: 

�
cos 𝑧𝑧
sin 𝑧𝑧

d𝑧𝑧 = �
d𝑥𝑥
𝑥𝑥

 

ln(sin 𝑧𝑧) = ln(𝑥𝑥) + 𝑐𝑐1 

sin 𝑧𝑧 = 𝐴𝐴𝑥𝑥 

sin �
𝑦𝑦
𝑥𝑥
� = 𝐴𝐴𝑥𝑥 

𝑦𝑦 = 𝑥𝑥 sin−1(𝐴𝐴𝑥𝑥) 

 

Identifying homogeneous ODEs: 

How can we know if an ODE is homogeneous d𝑦𝑦
d𝑥𝑥

= 𝐹𝐹(𝑦𝑦/𝑥𝑥) when it is written in the standard way? 

𝐴𝐴(𝑥𝑥,𝑦𝑦)d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦 = 0    

d𝑦𝑦
d𝑥𝑥

=
𝐴𝐴(𝑥𝑥,𝑦𝑦)
𝐵𝐵(𝑥𝑥,𝑦𝑦) 

The answer is that we can check if A and B are “homogeneous functions of the same order”. A function 
𝑓𝑓(𝑥𝑥,𝑦𝑦) is said to be homogeneous of order 𝑛𝑛 if 𝑓𝑓(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = 𝜆𝜆𝑛𝑛𝑓𝑓(𝑥𝑥,𝑦𝑦). 

 

Proof: Make the change of variables 𝑦𝑦 = 𝑧𝑧𝑥𝑥 in 𝐴𝐴 and 𝐵𝐵, and use the fact that they are homogeneous: 

𝐴𝐴(𝑥𝑥,𝑦𝑦)
𝐵𝐵(𝑥𝑥,𝑦𝑦) =

𝐴𝐴(𝑥𝑥, 𝑥𝑥𝑧𝑧)
𝐵𝐵(𝑥𝑥, 𝑥𝑥𝑧𝑧) =

𝑥𝑥𝑛𝑛𝐴𝐴(1, 𝑧𝑧)
𝑥𝑥𝑛𝑛𝐵𝐵(1, 𝑧𝑧)

=
𝐴𝐴(1, 𝑧𝑧)
𝐵𝐵(1, 𝑧𝑧) = 𝐹𝐹(𝑧𝑧) = 𝐹𝐹 �

𝑦𝑦
𝑥𝑥
� 

�𝐴𝐴
(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = 𝜆𝜆𝑛𝑛𝐴𝐴(𝑥𝑥,𝑦𝑦)

𝐵𝐵(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = 𝜆𝜆𝑛𝑛𝐵𝐵(𝑥𝑥,𝑦𝑦)
A and B are homogeneous order n

⟹   
𝐴𝐴(𝑥𝑥,𝑦𝑦)
𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝐹𝐹 �

𝑦𝑦
𝑥𝑥
� 
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In practice, we see that for both 𝐴𝐴 and 𝐵𝐵 to be homogeneous, and of the same degree, we require 
the sum of the powers in 𝑥𝑥 and 𝑦𝑦 in each term of 𝐴𝐴 and 𝐵𝐵 to be the same. Therefore, the 
homogeneity of the ODE can, in practice, be evaluated by simple inspection: 

Order 1: 

d𝑦𝑦
d𝑥𝑥

=
𝑥𝑥 + 3𝑦𝑦
𝑦𝑦

 

Order 2: 

d𝑦𝑦
d𝑥𝑥

=
𝑥𝑥2 + 3𝑦𝑦𝑥𝑥
𝑦𝑦2 + 𝑦𝑦𝑥𝑥

 

Order 3: 

d𝑦𝑦
d𝑥𝑥

=
𝑥𝑥3 + 𝑦𝑦2𝑥𝑥

𝑥𝑥2𝑦𝑦 + 𝑦𝑦3 + 𝑥𝑥3
 

When an homogeneous ODE is identified, we can apply the change of variables “blindly” without 
having to find the function 𝐹𝐹(𝑦𝑦/𝑥𝑥), and the ODE will always be reduced to a separable one.  

Proof: 

𝐴𝐴(𝑥𝑥,𝑦𝑦)d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦 = 0    

Now we apply the change of variables 𝑦𝑦 = 𝑧𝑧𝑥𝑥    →       d𝑦𝑦 = 𝑧𝑧 d𝑥𝑥 + 𝑥𝑥 d𝑧𝑧 and we get: 

𝐴𝐴(𝑥𝑥, 𝑥𝑥𝑧𝑧)d𝑥𝑥 + 𝐵𝐵(𝑥𝑥, 𝑥𝑥𝑧𝑧)(𝑧𝑧 d𝑥𝑥 + 𝑥𝑥 d𝑧𝑧) = 0    

Using the fact that 𝐴𝐴 and 𝐵𝐵 are homogeneous: 

𝑥𝑥𝑛𝑛𝐴𝐴(1, 𝑧𝑧)d𝑥𝑥 + 𝑥𝑥𝑛𝑛𝐵𝐵(1, 𝑧𝑧)(𝑧𝑧 d𝑥𝑥 + 𝑥𝑥 d𝑧𝑧) = 0    

𝐴𝐴(1, 𝑧𝑧)d𝑥𝑥 + 𝐵𝐵(1, 𝑧𝑧)(𝑧𝑧 d𝑥𝑥 + 𝑥𝑥 d𝑧𝑧) = 0    

which is separable: 

d𝑥𝑥
𝑥𝑥

= −
𝐵𝐵(1, 𝑧𝑧)

𝐴𝐴(1, 𝑧𝑧) + 𝑧𝑧 𝐵𝐵(1, 𝑧𝑧) d𝑧𝑧 

And can be solved by integration. 
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6) Solve 

d𝑦𝑦
d𝑥𝑥

=
𝑥𝑥2𝑦𝑦

𝑥𝑥3 + 𝑦𝑦3
 

Solution: In the unfolded form, it becomes: 

(−𝑥𝑥2𝑦𝑦)�����
𝐴𝐴(𝑥𝑥,𝑦𝑦)

d𝑥𝑥 + (𝑥𝑥3 + 𝑦𝑦3)�������
𝐵𝐵(𝑥𝑥,𝑦𝑦)

d𝑦𝑦 = 0 

This turns out to be a homogeneous equation, because 𝐴𝐴 and 𝐵𝐵 are homogeneous of the same order. 

𝐴𝐴(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = (𝜆𝜆𝑥𝑥)2(𝜆𝜆𝑦𝑦) = 𝜆𝜆3(𝑥𝑥2𝑦𝑦) = 𝜆𝜆3𝐴𝐴(𝑥𝑥,𝑦𝑦) 
𝐵𝐵(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = (𝜆𝜆𝑥𝑥)3 + (𝜆𝜆𝑦𝑦)3 = 𝜆𝜆3(𝑥𝑥3 + 𝑦𝑦3) = 𝜆𝜆3𝐵𝐵(𝑥𝑥,𝑦𝑦) 

Indeed, we can see that all terms in both 𝐴𝐴 and 𝐵𝐵 have a sum of powers of 𝑥𝑥 and 𝑦𝑦 equal to 3. 

Therefore, the equation is homogeneous.  

We have two possible paths now: 

Path 1: Write the equation in the form d𝑦𝑦
d𝑥𝑥

= 𝐹𝐹 �𝑦𝑦
𝑥𝑥
�, which we now know is possible when 𝐴𝐴 and 𝐵𝐵 

are homogeneous, and then do the change of variables 𝑧𝑧 = 𝑦𝑦/𝑥𝑥 and solve as above. 

Path 2: Directly do the change of variables 𝑧𝑧 = 𝑦𝑦/𝑥𝑥 in the unfolded form and solve. 

Both paths give the same final integrals to do. Let’s follow Path 2.  

We do the change of variables 𝑧𝑧 = 𝑦𝑦/𝑥𝑥 → 𝑦𝑦 = 𝑧𝑧𝑥𝑥 →  d𝑦𝑦 = 𝑧𝑧 d𝑥𝑥 + 𝑥𝑥 d𝑧𝑧 

(−𝑥𝑥2𝑦𝑦)d𝑥𝑥 + (𝑥𝑥3 + 𝑦𝑦3)d𝑦𝑦 = 0 
(−𝑥𝑥3𝑧𝑧) d𝑥𝑥 + (𝑥𝑥3 + 𝑥𝑥3𝑧𝑧3)(𝑧𝑧 d𝑥𝑥 + 𝑥𝑥 d𝑧𝑧) = 0 
(−𝑧𝑧)d𝑥𝑥 + (1 + 𝑧𝑧3)(𝑧𝑧 d𝑥𝑥 + 𝑥𝑥 d𝑧𝑧) = 0 
d𝑥𝑥(𝑧𝑧4) + d𝑧𝑧 𝑥𝑥(1 + 𝑧𝑧3) = 0 
d𝑥𝑥
𝑥𝑥

= −
(1 + 𝑧𝑧3)

𝑧𝑧4
d𝑧𝑧 

Integrating both sides: 

�
d𝑥𝑥
𝑥𝑥

= ��−
1
𝑧𝑧4
−

1
𝑧𝑧
� d𝑧𝑧 

ln(𝑥𝑥) =
1

3𝑧𝑧3
− ln(𝑧𝑧) + 𝑐𝑐1 

ln(𝑥𝑥) + ln(𝑧𝑧) =
1

3𝑧𝑧3
+ 𝑐𝑐1 

ln(𝑥𝑥𝑧𝑧) =
1

3𝑧𝑧3
+ 𝑐𝑐1 

And, substituting 𝑧𝑧 = 𝑦𝑦/𝑥𝑥 we get: 

ln(𝑦𝑦) =
𝑥𝑥3

3𝑦𝑦3
+ 𝑐𝑐 

This is a transcendental equation in 𝑦𝑦 (i.e. we cannot solve it as 𝑦𝑦 = 𝑦𝑦(𝑥𝑥)), and it is the general solution 
of the problem. 
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F. OTHER METHODS: 

These were just an arbitrary selection of some methods for solving first order ODEs. Mathematics 
textbooks contain many other methods, e.g. [Riley, Hobson, Bence: Chapters 14 and 15], [K. A. Stroud 
Programmes 24 and 25]. I didn’t mention methods using series solutions, e.g. [Riley, Hobson, Bence: 
Chapter 16]. 

As you can see different ODEs can be solved in different ways. Unfortunately, there is no general 
method for solving all ODEs. In fact, in general, ODEs do not necessarily have a solution. 

Differential equations is a huge topic that would require entire modules to study. During your 
professional practice, when you are faced with a differential equation, this is my advice: 

1) Check if it is a known differential equation:  
This happens very often if the ODE “looks” simple. It means that someone else solved it 
already! So, you can consult a book. 
 

2) Try to solve it analytically: 
a. Use a symbolic mathematics software to try to find an analytic solution (e.g. 

Mathematica’s DSolve function). Warning: this might fail or give you the answer in an 
unfamiliar notation. 

 

a. Consult a book for known methods of solving ODEs to see if some method works 
 

3) The differential equation might not have an analytic solution. 
Solve it computationally: We could have several modules’ worth to say about this! 
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PROBLEMS 

LINEAR ODEs WITH CONSTANT COEFFICIENTS 

7) Solve 

d2𝑦𝑦
d𝑥𝑥2

+ 4𝑦𝑦 = sin 2𝑥𝑥 

  
Solution: It is a linear ODE with constant coefficients, so we need to find 𝑦𝑦𝐶𝐶(𝑥𝑥) and 𝑦𝑦𝑃𝑃(𝑥𝑥). 

Solving the homogeneous equation: 

𝑦𝑦𝐶𝐶(𝑥𝑥) is the solution to the homogeneous equation d
2𝑦𝑦
d𝑥𝑥2

+ 4𝑦𝑦 = 0. Solved with the ansatz 𝑦𝑦(𝑥𝑥) =
𝐴𝐴𝑒𝑒𝑚𝑚𝑥𝑥. Substituting into the homogeneous equation we arrive at the characteristic polynomial: 

𝑚𝑚2 + 4 = 0, which can be factorised as (𝑚𝑚 − 2𝑖𝑖)(𝑚𝑚 + 2𝑖𝑖) = 0. Therefore, the complementary 
solution is:  

𝑦𝑦𝐶𝐶(𝑥𝑥) = 𝐴𝐴1𝑒𝑒2𝑖𝑖𝑥𝑥 + 𝐴𝐴2𝑒𝑒−2𝑖𝑖𝑥𝑥 = 𝐵𝐵1 cos 2𝑥𝑥 + 𝐵𝐵2 sin 2𝑥𝑥 

Solving the particular solution: 

𝑦𝑦𝑃𝑃(𝑥𝑥) is the particular solution, found by looking at the form of 𝑟𝑟(𝑥𝑥) = sin 2𝑥𝑥, which seems to suggest 
us to try the ansatz: 

 𝑦𝑦𝑃𝑃(𝑥𝑥) = sin 2𝑥𝑥 + cos 2𝑥𝑥.  

However, the terms sin 2𝑥𝑥 and cos 2𝑥𝑥 are already “taken” by the complementary solution! Therefore, 
we must multiply by 𝑥𝑥 as many times as needed to avoid the “taken” terms. In this case multiplying 
by 𝑥𝑥 once will suffice: 

𝑦𝑦𝑃𝑃(𝑥𝑥) = 𝑎𝑎𝑥𝑥 sin 2𝑥𝑥 + 𝑏𝑏𝑥𝑥 cos 2𝑥𝑥 

Now we can substitute this into the ODE in order to find the coefficients (𝑎𝑎, 𝑏𝑏) [remember to use the 
product rule]: 

𝑦𝑦𝑃𝑃′ (𝑥𝑥) = 2𝑎𝑎𝑥𝑥 cos 2𝑥𝑥 + 𝑎𝑎 sin 2𝑥𝑥 − 2𝑏𝑏𝑥𝑥 sin 2𝑥𝑥 + 𝑏𝑏 cos 2𝑥𝑥 
= (2𝑎𝑎𝑥𝑥 + 𝑏𝑏) cos 2𝑥𝑥 + (𝑎𝑎 − 2𝑏𝑏𝑥𝑥) sin 2𝑥𝑥 

𝑦𝑦𝑃𝑃′′(𝑥𝑥) = −2(2𝑎𝑎𝑥𝑥 + 𝑏𝑏) sin 2𝑥𝑥 + 2𝑎𝑎 cos 2𝑥𝑥 + 2(𝑎𝑎 − 2𝑏𝑏𝑥𝑥) cos 2𝑥𝑥 − 2𝑏𝑏 sin 2𝑥𝑥 
= (−4𝑎𝑎𝑥𝑥 − 4𝑏𝑏) sin 2𝑥𝑥 + (−4𝑏𝑏𝑥𝑥 + 4𝑎𝑎) cos 2𝑥𝑥 

We can substitute 𝑦𝑦𝑃𝑃(𝑥𝑥) into the ODE: 𝑦𝑦𝑃𝑃′′(𝑥𝑥) + 4𝑦𝑦𝑃𝑃(𝑥𝑥) = sin 2𝑥𝑥 and equate coefficients of sin 2𝑥𝑥 
and cos 2𝑥𝑥 at both sides: 

(−4𝑎𝑎𝑥𝑥 − 4𝑏𝑏) sin 2𝑥𝑥 + (−4𝑏𝑏𝑥𝑥 + 4𝑎𝑎) cos 2𝑥𝑥 + 4𝑎𝑎𝑥𝑥 sin 2𝑥𝑥 + 4𝑏𝑏𝑥𝑥 cos 2𝑥𝑥 = sin 2𝑥𝑥 
→   −4𝑏𝑏 sin 2𝑥𝑥 + 4𝑎𝑎 cos 2𝑥𝑥 = sin 2𝑥𝑥  →   �−4𝑏𝑏 = 1

4𝑎𝑎 = 0 →  �𝑏𝑏 = −1/4
𝑎𝑎 = 0   

𝑦𝑦𝑃𝑃(𝑥𝑥) = −
1
4
𝑥𝑥 cos 2𝑥𝑥 

And so, the general solution reads: 𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝐶𝐶(𝑥𝑥) + 𝑦𝑦𝑃𝑃(𝑥𝑥) 

𝑦𝑦(𝑥𝑥) = 𝐵𝐵1 cos 2𝑥𝑥 + 𝐵𝐵2 sin 2𝑥𝑥 −
1
4
𝑥𝑥 cos 2𝑥𝑥 
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8) Solve 

d2𝑦𝑦
d𝑥𝑥2

+
d𝑦𝑦
d𝑥𝑥

− 2𝑦𝑦 = 𝑒𝑒𝑥𝑥 

 

Solution: It is a linear ODE with constant coefficients, so we need to find 𝑦𝑦𝐶𝐶(𝑥𝑥) and 𝑦𝑦𝑃𝑃(𝑥𝑥). 

Solving the homogeneous equation: 

𝑦𝑦𝐶𝐶(𝑥𝑥) is the solution to the homogeneous equation d
2𝑦𝑦
d𝑥𝑥2

+ d𝑦𝑦
d𝑥𝑥
− 2𝑦𝑦 = 0. Solved with the ansatz 𝑦𝑦(𝑥𝑥) =

𝐴𝐴𝑒𝑒𝑚𝑚𝑥𝑥. Substituting into the homogeneous equation we arrive at the characteristic polynomial: 

𝑚𝑚2 + 𝑚𝑚 − 2 = 0, which can be factorised as (𝑚𝑚 + 2)(𝑚𝑚− 1) = 0. Therefore, the complementary 
solution is:  

𝑦𝑦𝐶𝐶(𝑥𝑥) = 𝐴𝐴1𝑒𝑒−2𝑥𝑥 + 𝐴𝐴2𝑒𝑒𝑥𝑥 

Solving the particular solution: 

𝑦𝑦𝑃𝑃(𝑥𝑥) is the particular solution, found by looking at the form of 𝑟𝑟(𝑥𝑥) = 𝑒𝑒𝑥𝑥, which seems to suggest 
us to try the ansatz 𝑦𝑦𝑃𝑃(𝑥𝑥) = 𝑎𝑎𝑒𝑒𝑥𝑥. 

However, the term 𝑒𝑒𝑥𝑥 is already “taken” by the complementary solution! Therefore, we have to 
multiply by 𝑥𝑥 as many times as needed to avoid the taken terms. In this case multiplying by 𝑥𝑥 once will 
suffice. 

𝑦𝑦𝑃𝑃(𝑥𝑥) = 𝑎𝑎𝑥𝑥𝑒𝑒𝑥𝑥 

Now we can substitute this into the ODE in order to find the coefficient 𝑎𝑎. 

d2

d𝑥𝑥2
(𝑎𝑎𝑥𝑥𝑒𝑒𝑥𝑥) +

d
d𝑥𝑥

(𝑎𝑎𝑥𝑥𝑒𝑒𝑥𝑥)− 2(𝑎𝑎𝑥𝑥𝑒𝑒𝑥𝑥) = 𝑒𝑒𝑥𝑥 

𝑎𝑎 
d

d𝑥𝑥
(𝑥𝑥𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑥𝑥) + 𝑎𝑎(𝑥𝑥𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑥𝑥) − 2𝑎𝑎𝑥𝑥𝑒𝑒𝑥𝑥 = 𝑒𝑒𝑥𝑥 

𝑎𝑎 (𝑥𝑥𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑥𝑥) + 𝑎𝑎(𝑥𝑥𝑒𝑒𝑥𝑥 + 𝑒𝑒𝑥𝑥) − 2𝑎𝑎𝑥𝑥𝑒𝑒𝑥𝑥 = 𝑒𝑒𝑥𝑥 

3𝑎𝑎𝑒𝑒𝑥𝑥 = 𝑒𝑒𝑥𝑥 

𝑎𝑎 =
1
3

 

So we find the particular solution to be: 

𝑦𝑦𝑃𝑃(𝑥𝑥) =
1
3
𝑥𝑥𝑒𝑒𝑥𝑥 

And so, the general solution reads: 

𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝐶𝐶(𝑥𝑥) + 𝑦𝑦𝑃𝑃(𝑥𝑥) 

𝑦𝑦(𝑥𝑥) = 𝐴𝐴1𝑒𝑒−2𝑥𝑥 + 𝐴𝐴2𝑒𝑒𝑥𝑥 +
1
3
𝑥𝑥𝑒𝑒𝑥𝑥 
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EXACT DIFFERENTIAL EQUATIONS 

9) Solve 

𝑥𝑥𝑒𝑒𝑦𝑦d𝑦𝑦 + 𝑒𝑒𝑦𝑦d𝑥𝑥 = 𝑥𝑥3 d𝑥𝑥 

Solution: This is an equation in the form: 

𝐴𝐴(𝑥𝑥,𝑦𝑦)d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

We can see that: 

𝜕𝜕𝐵𝐵
𝜕𝜕𝑥𝑥

= 𝑒𝑒𝑦𝑦 =
𝜕𝜕𝐴𝐴
𝜕𝜕𝑦𝑦

= 𝑒𝑒𝑦𝑦 

Therefore, the equation is exact, which means that 𝑒𝑒𝑦𝑦d𝑥𝑥 + 𝑥𝑥𝑒𝑒𝑦𝑦d𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

d𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

d𝑦𝑦 = d𝐹𝐹. 

To find d𝐹𝐹, we can either think (it is not too difficult to realise that 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑒𝑒𝑦𝑦) or apply one of two 
methods: 

Method 1: Solve the simultaneous equations 𝐴𝐴(𝑥𝑥,𝑦𝑦) = 𝑒𝑒𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑒𝑒𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 by 

integrating one and substituting the unknown coefficient on the other. 

Method 2: Do a line integral of 𝑒𝑒𝑦𝑦d𝑥𝑥 + 𝑥𝑥𝑒𝑒𝑦𝑦d𝑦𝑦 = d𝐹𝐹 along the path (0,0) → (𝑥𝑥, 0) → (𝑥𝑥,𝑦𝑦) 

� 𝑒𝑒𝑦𝑦d𝑥𝑥 + 𝑥𝑥𝑒𝑒𝑦𝑦d𝑦𝑦
(𝑥𝑥,𝑦𝑦)

(0,0)
= � d𝐹𝐹

(𝑥𝑥,𝑦𝑦)

(0,0)
= 𝐹𝐹(𝑥𝑥,𝑦𝑦) − 𝐹𝐹0 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐹𝐹0 + � 𝑒𝑒𝑦𝑦d𝑥𝑥 + 𝑥𝑥𝑒𝑒𝑦𝑦d𝑦𝑦
(𝑥𝑥,𝑦𝑦)

(0,0)
= 𝐹𝐹0 + � 𝑒𝑒𝑦𝑦�

𝑦𝑦=0
d𝑥𝑥

𝑥𝑥

0
+ � 𝑥𝑥𝑒𝑒𝑦𝑦�

𝑥𝑥=𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐
d𝑦𝑦

𝑦𝑦

0
= 𝐹𝐹0 + 𝑥𝑥 + 𝑥𝑥𝑒𝑒𝑦𝑦 − 𝑥𝑥

= 𝐹𝐹0 + 𝑥𝑥𝑒𝑒𝑦𝑦 

Therefore, the function 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐹𝐹0 + 𝑥𝑥𝑒𝑒𝑦𝑦 leads to the total differential on the LHS: 

𝑥𝑥𝑒𝑒𝑦𝑦d𝑦𝑦 + 𝑒𝑒𝑦𝑦d𝑥𝑥 = 𝑥𝑥3 d𝑥𝑥 

d𝐹𝐹 = 𝑥𝑥3 d𝑥𝑥 

Integrating both sides: 

𝐹𝐹 =
1
4
𝑥𝑥4 + 𝑐𝑐 

And substituting 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐹𝐹0 + 𝑥𝑥𝑒𝑒𝑦𝑦 (we may group the constants 𝐹𝐹0 and 𝑐𝑐 as one single 𝐴𝐴 = 𝑐𝑐 − 𝐹𝐹0) 
we arrive at: 

𝑥𝑥𝑒𝑒𝑦𝑦 =
1
4
𝑥𝑥4 + 𝐴𝐴 

𝑒𝑒𝑦𝑦 =
1
4
𝑥𝑥3 +

𝐴𝐴
𝑥𝑥

 

𝑦𝑦 = ln �
1
4
𝑥𝑥3 +

𝐴𝐴
𝑥𝑥
� 
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10) Solve 

𝑦𝑦 cos(𝑥𝑥𝑦𝑦) d𝑥𝑥 + 𝑥𝑥 cos(𝑥𝑥𝑦𝑦) d𝑦𝑦 =  d𝑥𝑥 

Solution: This is an equation in the form: 

𝐴𝐴(𝑥𝑥,𝑦𝑦)d𝑥𝑥 + 𝐵𝐵(𝑥𝑥,𝑦𝑦)d𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

We can see that: 

𝜕𝜕𝐵𝐵
𝜕𝜕𝑥𝑥

= cos(𝑥𝑥𝑦𝑦) − 𝑥𝑥𝑦𝑦 sin(𝑥𝑥𝑦𝑦) =
𝜕𝜕𝐴𝐴
𝜕𝜕𝑦𝑦

= cos(𝑥𝑥𝑦𝑦) − 𝑥𝑥𝑦𝑦 sin(𝑥𝑥𝑦𝑦) 

Therefore, the equation is exact, which means that 𝑦𝑦 cos(𝑥𝑥𝑦𝑦) d𝑥𝑥 + 𝑥𝑥 cos(𝑥𝑥𝑦𝑦) d𝑦𝑦 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

d𝑥𝑥 + 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

d𝑦𝑦 =

d𝐹𝐹. To find 𝐹𝐹(𝑥𝑥,𝑦𝑦), we can either think (it is not too difficult to realise that 𝐹𝐹(𝑥𝑥,𝑦𝑦) = sin(𝑥𝑥𝑦𝑦)) or 
apply one of two methods: 

Method 1: Solve the simultaneous equations 𝐴𝐴(𝑥𝑥,𝑦𝑦) = 𝑦𝑦 cos(𝑥𝑥𝑦𝑦) = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

 and 𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝑥𝑥 cos(𝑥𝑥𝑦𝑦) =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 by integrating one and substituting the unknown coefficient on the other. 

Method 2: Do a line integral of 𝑒𝑒𝑦𝑦d𝑥𝑥 + 𝑥𝑥𝑒𝑒𝑦𝑦d𝑦𝑦 = d𝐹𝐹 along the path (0,0) → (𝑥𝑥, 0) → (𝑥𝑥,𝑦𝑦) 

� 𝑦𝑦 cos(𝑥𝑥𝑦𝑦) d𝑥𝑥 + 𝑥𝑥 cos(𝑥𝑥𝑦𝑦) d𝑦𝑦
(𝑥𝑥,𝑦𝑦)

(0,0)
= � d𝐹𝐹

(𝑥𝑥,𝑦𝑦)

(0,0)
= 𝐹𝐹(𝑥𝑥,𝑦𝑦) − 𝐹𝐹0 

𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐹𝐹0 + � 𝑦𝑦 cos(𝑥𝑥𝑦𝑦) d𝑥𝑥 + 𝑥𝑥 cos(𝑥𝑥𝑦𝑦) d𝑦𝑦
(𝑥𝑥,𝑦𝑦)

(0,0)
= 𝐹𝐹0 + � 𝑦𝑦 cos(𝑥𝑥𝑦𝑦)�������

𝑦𝑦=0
d𝑥𝑥

𝑥𝑥

0
+� 𝑥𝑥 cos(𝑥𝑥𝑦𝑦)�������

𝑥𝑥=𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐
d𝑦𝑦

𝑦𝑦

0

= 𝐹𝐹0 + 0 + sin(𝑥𝑥𝑦𝑦) 

Therefore, the function 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐹𝐹0 + sin(𝑥𝑥𝑦𝑦) leads to the total differential on the LHS: 

𝑦𝑦 cos(𝑥𝑥𝑦𝑦) d𝑥𝑥 + 𝑥𝑥 cos(𝑥𝑥𝑦𝑦) d𝑦𝑦 =  d𝑥𝑥 

d𝐹𝐹 = d𝑥𝑥 

Integrating both sides: 

𝐹𝐹 = 𝑥𝑥 + 𝑐𝑐 

And substituting 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐹𝐹0 + sin(𝑥𝑥𝑦𝑦) (we may group the constants 𝐹𝐹0 and 𝑐𝑐 as one single 𝐴𝐴 = 𝑐𝑐 −
𝐹𝐹0) we arrive at: 

sin(𝑥𝑥𝑦𝑦) = 𝑥𝑥 + 𝐴𝐴 

𝑦𝑦 =
sin−1(𝑥𝑥 + 𝐴𝐴)

𝑥𝑥
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FIRST ORDER LINEAR ODE (NO CONSTANT COEFFICIENTS) OF THE FORM d𝑦𝑦
d𝑥𝑥

+ 𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝑄𝑄(𝑥𝑥). 

11) Solve the first order linear ODE: 

d𝑦𝑦
d𝑥𝑥

+
1
𝑥𝑥
𝑦𝑦 = 𝑥𝑥2 

This function is first order linear, but not with constant coefficients. It can be written in the form: 

d𝑦𝑦
d𝑥𝑥

+ 𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝑄𝑄(𝑥𝑥) 

When an ODE can be written in this form, we know that an integrating factor 𝐼𝐼(𝑥𝑥) = exp{∫𝑃𝑃(𝑥𝑥)d𝑥𝑥} 
always converts the left-hand side of the equation into an exact differential! 

In this case, 𝑃𝑃(𝑥𝑥) = 𝑥𝑥−1 and 𝑄𝑄(𝑥𝑥) = 𝑥𝑥2, hence the integrating factor must be: 

𝐼𝐼(𝑥𝑥) = exp ��𝑃𝑃(𝑥𝑥)d𝑥𝑥� = exp ��𝑥𝑥−1d𝑥𝑥� = exp{ln𝑥𝑥} = 𝑥𝑥 

Multiplying times the integrating factor on both sides: 

d𝑦𝑦
d𝑥𝑥

𝑥𝑥 + 𝑦𝑦 = 𝑥𝑥3 

We know that this must now be an exact differential equation, i.e.: 

𝑥𝑥 d𝑦𝑦 + d𝑥𝑥 𝑦𝑦 = 𝑥𝑥3 d𝑥𝑥 

Indeed, now the left-hand side is the exact differential of 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑦𝑦. (If you could not find this 
easily, you can follow one of the two known methods discussed in the “exact differential equations” 
section, which involved integration). Therefore: 

d𝐹𝐹 = 𝑥𝑥3 d𝑥𝑥 

So, we can integrate both sides: 

𝐹𝐹 =
1
4
𝑥𝑥4 + 𝑐𝑐1 

And substituting 𝐹𝐹 = 𝑥𝑥𝑦𝑦, we get: 

𝑥𝑥𝑦𝑦 =
1
4
𝑥𝑥4 + 𝑐𝑐1 

𝑦𝑦 =
1
4
𝑥𝑥3 +

𝑐𝑐1
𝑥𝑥

 

Notice that, since the ODE was a linear equation, the solution is of the expected form. The term with 

arbitrary scaling 𝑦𝑦𝐻𝐻(𝑥𝑥) = 𝑐𝑐1
𝑥𝑥

 is the solution to the homogeneous equation d𝑦𝑦
d𝑥𝑥

+ 1
𝑥𝑥
𝑦𝑦 = 0, while the term 

𝑦𝑦𝑃𝑃(𝑥𝑥) = 1
4
𝑥𝑥3 is a particular solution. 
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12) Solve the first order linear ODE (not constant coefficients): 

d𝑦𝑦
d𝑥𝑥

+
1

tan𝑥𝑥
𝑦𝑦 = cos𝑥𝑥 

This function is first order linear, but not with constant coefficients. It can be written in the form: 

d𝑦𝑦
d𝑥𝑥

+ 𝑃𝑃(𝑥𝑥)𝑦𝑦 = 𝑄𝑄(𝑥𝑥) 

When an ODE can be written in this form, we know that an integrating factor 𝐼𝐼(𝑥𝑥) = exp{∫𝑃𝑃(𝑥𝑥)d𝑥𝑥} 
always converts the left-hand side of the equation into an exact differential! 

In this case, 𝑃𝑃(𝑥𝑥) = 1
tan𝑥𝑥

= cos𝑥𝑥
sin𝑥𝑥

 and 𝑄𝑄(𝑥𝑥) = cos𝑥𝑥, hence the integrating factor must be: 

𝐼𝐼(𝑥𝑥) = exp ��𝑃𝑃(𝑥𝑥) d𝑥𝑥� = exp ��
cos𝑥𝑥
sin𝑥𝑥

d𝑥𝑥� = exp{ln(sin𝑥𝑥)} = sin𝑥𝑥 

Multiplying times the integrating factor on both sides: 

d𝑦𝑦
d𝑥𝑥

sin𝑥𝑥 +
sin𝑥𝑥
tan𝑥𝑥

𝑦𝑦 = sin𝑥𝑥 cos𝑥𝑥 

d𝑦𝑦
d𝑥𝑥

sin𝑥𝑥 + 𝑦𝑦 cos𝑥𝑥 = sin𝑥𝑥 cos𝑥𝑥 

We know that this must now be an exact differential equation, i.e.: 

sin𝑥𝑥 d𝑦𝑦 + 𝑦𝑦 cos𝑥𝑥 d𝑥𝑥 = sin𝑥𝑥 cos𝑥𝑥 d𝑥𝑥 

Indeed, the left-hand side is the exact differential of 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑦𝑦 sin𝑥𝑥. (If you could not find this easily, 
you can follow one of the two known methods discussed in the “exact differential equations” section, 
which involved integration). 

d𝐹𝐹 = sin𝑥𝑥 cos𝑥𝑥 d𝑥𝑥 

So we can integrate both sides: 

𝐹𝐹 =
1
2

sin2 𝑥𝑥 + 𝑐𝑐1 

And substituting 𝐹𝐹 = 𝑦𝑦 sin𝑥𝑥, we get: 

𝑦𝑦 sin𝑥𝑥 =
1
2

sin2 𝑥𝑥 + 𝑐𝑐1 

𝑦𝑦 =
1
2

sin𝑥𝑥 +
𝑐𝑐1

sin𝑥𝑥
 

Notice that, since the ODE was a linear equation, the solution is of the expected form. The term with 

arbitrary scaling 𝑦𝑦𝐻𝐻(𝑥𝑥) = 𝑐𝑐1
sin𝑥𝑥

 is the solution to the homogeneous equation d𝑦𝑦
d𝑥𝑥

+ 1
tan𝑥𝑥

𝑦𝑦 = 0, while 

the term 𝑦𝑦𝑃𝑃(𝑥𝑥) = 1
2

sin𝑥𝑥 is a particular solution. 
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HOMOGENEOUS DIFFERENTIAL EQUATIONS 

13) Find the general solution to 

d𝑦𝑦
d𝑥𝑥

=
𝑥𝑥 + 3𝑦𝑦

2𝑥𝑥
 

This ODE is not separable. Also, (𝑥𝑥 + 3𝑦𝑦)d𝑥𝑥 + 2𝑥𝑥 d𝑦𝑦 is not an exact differential. 

However, it is a homogeneous equation. 

Both 𝐴𝐴(𝑥𝑥,𝑦𝑦) = (𝑥𝑥 + 3𝑦𝑦) and 𝐵𝐵(𝑥𝑥,𝑦𝑦) = 2𝑥𝑥 are homogeneous of order 1, because they fulfil: 

�𝐴𝐴
(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = 𝜆𝜆𝑛𝑛𝐴𝐴(𝑥𝑥,𝑦𝑦)

𝐵𝐵(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = 𝜆𝜆𝑛𝑛𝐵𝐵(𝑥𝑥,𝑦𝑦) 

Therefore, the equation can be made separable by using the change of variables 𝑦𝑦 = 𝑧𝑧𝑥𝑥. 

LHS =
d𝑦𝑦
d𝑥𝑥

=
d

d𝑥𝑥
(𝑥𝑥𝑧𝑧) = 𝑥𝑥

d𝑧𝑧
d𝑥𝑥

+ 𝑧𝑧 

RHS =
𝑥𝑥 + 3𝑦𝑦

2𝑥𝑥
=
𝑥𝑥 + 3𝑥𝑥𝑧𝑧

2𝑥𝑥
=

1 + 3𝑧𝑧
2

 

The resulting ODE must be separable: 

𝑥𝑥
d𝑧𝑧
d𝑥𝑥

+ 𝑧𝑧 =
1 + 3𝑧𝑧

2
 

𝑥𝑥
d𝑧𝑧
d𝑥𝑥

=
1 + 3𝑧𝑧

2
− 𝑧𝑧 = �

1
2
� (1 + 𝑧𝑧) 

2
1 + 𝑧𝑧

d𝑧𝑧 =
1
𝑥𝑥

d𝑥𝑥 

Integrating both sides: 

2 ln(1 + 𝑧𝑧) = ln(𝑥𝑥) + 𝑐𝑐1 

Taking the exponential on both sides (𝐴𝐴 = 𝑒𝑒𝑐𝑐1): 

(1 + 𝑧𝑧)2 = 𝐴𝐴𝑥𝑥 

�1 +
𝑦𝑦
𝑥𝑥
�
2

= 𝐴𝐴𝑥𝑥 

(𝑥𝑥 + 𝑦𝑦)2 = 𝐴𝐴𝑥𝑥3 
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14) Solve 

d𝑦𝑦
d𝑥𝑥

=
𝑥𝑥2 + 𝑦𝑦2

𝑥𝑥𝑦𝑦
 

 
This ODE is not separable. Also, (𝑥𝑥2 + 𝑦𝑦2)d𝑥𝑥 + 𝑥𝑥𝑦𝑦 d𝑦𝑦 is not an exact differential. 

However, it is a homogeneous equation.  

Both 𝐴𝐴(𝑥𝑥,𝑦𝑦) = (𝑥𝑥2 + 𝑦𝑦2) and 𝐵𝐵(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑦𝑦 are homogeneous of order 2, because they fulfil: 

�𝐴𝐴
(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = 𝜆𝜆𝑛𝑛𝐴𝐴(𝑥𝑥,𝑦𝑦)

𝐵𝐵(𝜆𝜆𝑥𝑥, 𝜆𝜆𝑦𝑦) = 𝜆𝜆𝑛𝑛𝐵𝐵(𝑥𝑥,𝑦𝑦) 

Therefore, the equation can be made separable by using the change of variables 𝑦𝑦 = 𝑧𝑧𝑥𝑥. 

LHS =
d𝑦𝑦
d𝑥𝑥

=
d

d𝑥𝑥
(𝑥𝑥𝑧𝑧) = 𝑥𝑥

d𝑧𝑧
d𝑥𝑥

+ 𝑧𝑧 

RHS =
𝑥𝑥2 + 𝑦𝑦2

𝑥𝑥𝑦𝑦
=
𝑥𝑥2(1 + 𝑧𝑧2)

𝑥𝑥2𝑧𝑧
=

1 + 𝑧𝑧2

𝑧𝑧
 

The resulting ODE must always be separable (we proved it for a general homogeneous ODE): 

𝑥𝑥
d𝑧𝑧
d𝑥𝑥

+ 𝑧𝑧 =
1 + 𝑧𝑧2

𝑧𝑧
 

𝑥𝑥
d𝑧𝑧
d𝑥𝑥

=
1 + 𝑧𝑧2

𝑧𝑧
− 𝑧𝑧 =

1
𝑧𝑧

 

𝑧𝑧 d𝑧𝑧 =
1
𝑥𝑥

d𝑥𝑥 

Integrating both sides: 

1
2
𝑧𝑧2 = ln(𝑥𝑥) + 𝑐𝑐1 

Substituting 𝑦𝑦 back: 

1
2
�
𝑦𝑦
𝑥𝑥
�
2

= ln(𝑥𝑥) + 𝑐𝑐1 

𝑦𝑦2 = 2𝑥𝑥2(ln𝑥𝑥 + 𝑐𝑐1) 
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MORE EXAMPLES (Linear Equations) 

15) Find the form of the particular solution to this differential equation (make sure the particular 
solution is linearly independent to the complementary solution). You don’t need to determine 
the coefficients of the particular solution because it is lots of algebra, just indicate the steps. 

d2𝑦𝑦
d𝑥𝑥2

+ 4𝑦𝑦 = 𝑥𝑥2 sin 2𝑥𝑥 

 
Solution: It is a linear ODE with constant coefficients, so we need to find 𝑦𝑦𝐶𝐶(𝑥𝑥) and 𝑦𝑦𝑃𝑃(𝑥𝑥). 

Solving the homogeneous equation: 

𝑦𝑦𝐶𝐶(𝑥𝑥) is the solution to the homogeneous equation d
2𝑦𝑦
d𝑥𝑥2

+ 4𝑦𝑦 = 0. Solved with the ansatz 𝑦𝑦(𝑥𝑥) =
𝐴𝐴𝑒𝑒𝑚𝑚𝑥𝑥. Substituting into the homogeneous equation we arrive at the characteristic polynomial: 

𝑚𝑚2 + 4 = 0, which can be factorised as (𝑚𝑚 − 2𝑖𝑖)(𝑚𝑚 + 2𝑖𝑖) = 0. Therefore, the complementary 
solution is:  

𝑦𝑦𝐶𝐶(𝑥𝑥) = 𝐴𝐴1𝑒𝑒2𝑖𝑖𝑥𝑥 + 𝐴𝐴2𝑒𝑒−2𝑖𝑖𝑥𝑥 = 𝐵𝐵1 cos 2𝑥𝑥 + 𝐵𝐵2 sin 2𝑥𝑥 

Solving the particular solution: 

𝑦𝑦𝑃𝑃(𝑥𝑥) is the particular solution, found by looking at the form of 𝑟𝑟(𝑥𝑥) = 𝑥𝑥2 sin 2𝑥𝑥, which seems to 
suggest us to try the ansatz: 

 𝑦𝑦𝑃𝑃(𝑥𝑥) = (𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐) sin 2𝑥𝑥 + (𝑑𝑑𝑥𝑥2 + 𝑒𝑒𝑥𝑥 + 𝑓𝑓) cos 2𝑥𝑥.  

However, the terms sin 2𝑥𝑥 and cos 2𝑥𝑥 are already “taken” by the complementary solution! Therefore, 
we have to multiply by 𝑥𝑥 as many times as needed to avoid the taken terms. In this case multiplying 
by 𝑥𝑥 once will suffice: 

𝑦𝑦𝑃𝑃(𝑥𝑥) = (𝑎𝑎𝑥𝑥3 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥) sin 2𝑥𝑥 + (𝑑𝑑𝑥𝑥3 + 𝑒𝑒𝑥𝑥2 + 𝑓𝑓𝑥𝑥) cos 2𝑥𝑥 

Now we can substitute this into the ODE in order to find the coefficients (𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓). Lots of 
algebra! Double derivative requires doing the product rule and large equating coefficients problem. 
Anyway, after substitution of 𝑦𝑦𝑃𝑃(𝑥𝑥) into the ODE and equating coefficients, one can find the values of 
(𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒,𝑓𝑓) and build the general solution as 𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝐶𝐶(𝑥𝑥) + 𝑦𝑦𝑃𝑃(𝑥𝑥).  

A computer can easily perform the algebra, so we find: 

𝑦𝑦𝑃𝑃(𝑥𝑥) = −
𝑥𝑥3

12
cos 2𝑥𝑥 +

𝑥𝑥2

16
sin 2𝑥𝑥 +

𝑥𝑥
32

cos 2𝑥𝑥 

And so, the general solution reads: 𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝐶𝐶(𝑥𝑥) + 𝑦𝑦𝑃𝑃(𝑥𝑥) 

𝑦𝑦(𝑥𝑥) = 𝐵𝐵1 cos 2𝑥𝑥 + 𝐵𝐵2 sin 2𝑥𝑥 −
𝑥𝑥3

12
cos 2𝑥𝑥 +

𝑥𝑥2

16
sin 2𝑥𝑥 +

𝑥𝑥
32

cos 2𝑥𝑥 
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